
Bleomycin
Overview
Description
Bleomycin is a glycopeptide antibiotic derived from the bacterium Streptomyces verticillus. It is primarily used as an antineoplastic agent in the treatment of various cancers, including Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, testicular cancer, ovarian cancer, and cervical cancer . This compound is known for its ability to induce DNA strand breaks, which makes it effective in cancer therapy .
Preparation Methods
Synthetic Routes and Reaction Conditions: Bleomycin is produced through the fermentation of Streptomyces verticillus. The fermentation process involves the cultivation of the bacterium in a nutrient-rich medium, followed by the extraction and purification of the compound . The production of this compound involves several steps, including the isolation of the active glycopeptide, its chemical modification, and the formation of the final product .
Industrial Production Methods: Industrial production of this compound typically involves large-scale fermentation processes. The bacterium Streptomyces verticillus is grown in bioreactors under controlled conditions to maximize the yield of this compound . The fermentation broth is then subjected to various purification steps, including filtration, chromatography, and crystallization, to obtain the pure compound .
Chemical Reactions Analysis
DNA Cleavage via Metal-Oxygen Complex Formation
Bleomycin forms an activated low-spin ferric-hydroperoxide complex (Fe<sup>III</sup>-OOH, ABLM) in the presence of Fe<sup>II</sup> and O<sub>2</sub>. This intermediate abstracts hydrogen atoms from the C4′ position of deoxyribose in DNA, leading to single- and double-strand breaks . Key steps include:
-
Activation : Fe<sup>II</sup>-BLM + O<sub>2</sub> → Fe<sup>III</sup>-OOH (ABLM) .
-
H Abstraction : ABLM extracts H from DNA’s C4′, generating a radical intermediate and Fe<sup>IV</sup>=O .
-
Strand Scission : The radical reacts with O<sub>2</sub>, forming a peroxyl radical that fragments DNA .
Kinetic and Thermodynamic Parameters of ABLM Reactions
Direct monitoring of ABLM decay and DNA interaction via circular dichroism revealed distinct kinetic profiles:
Reaction Parameter | ABLM + DNA | ABLM Decay (No DNA) |
---|---|---|
Rate (s<sup>−1</sup>) | 0.044 ± 0.02 | 0.018 ± 0.003 |
k<sub>H</sub>/k<sub>D</sub> | 1.7 ± 0.2 | 3.6 ± 0.9 |
Activation Energy (kcal/mol) | 4.7 ± 0.9 | 9.3 ± 0.9 |
Data from .
The lower activation energy for DNA-linked reactions (4.7 vs. 9.3 kcal/mol) indicates preferential C–H bond cleavage over N–H abstraction in BLM’s degradation .
Comparative Reactivity with Enzymatic Systems
This compound’s catalytic profile aligns more closely with chloroperoxidase than cytochrome P-450 :
Reaction Type | This compound | Chloroperoxidase | Cytochrome P-450 |
---|---|---|---|
Peroxidation (o-dianisidine) | Yes | Yes | No |
N-Demethylation | Yes* | Yes | Yes |
Aliphatic Hydroxylation | No | No | Yes |
O<sub>2</sub> Evolution | Yes | Yes | No |
*Requires peroxides/iodosobenzene .
this compound catalyzes O<sub>2</sub> evolution from peroxyacids and chlorination via H<sub>2</sub>O<sub>2</sub>, mirroring chloroperoxidase .
Double-Strand DNA Damage Mechanism
This compound induces double-strand breaks (DSBs) at specific sites with high efficiency:
-
Target Sites : 5'-GC-3' and 5'-GT-3' sequences, with C4′ H atoms oriented toward the minor groove .
-
Efficiency : 43% of lesions at cytidine31 in hairpin DNA result in DSBs .
-
Structural Basis : Fe<sup>II</sup>-BLM binds DNA such that the metal center accesses opposing strand H atoms simultaneously .
Oxidative Reactions Beyond DNA Cleavage
This compound participates in diverse redox reactions:
-
N-Demethylation : Oxidizes N,N-dimethylaniline using H<sub>2</sub>O<sub>2</sub> or peroxyacids .
-
Mitochondrial Damage : Disrupts phosphatidylethanolamine synthesis, increasing ROS in fungi .
Role of Metal Ions in Reactivity
-
Iron Dependency : Fe<sup>II</sup> is essential for O<sub>2</sub> activation and ABLM formation .
-
Copper Binding : BLM-Cu complexes are inert but may stabilize the drug prior to Fe substitution .
This compound’s chemical reactivity hinges on its ability to harness Fe and O<sub>2</sub> for targeted DNA damage, with kinetic and structural studies elucidating its preference for H-atom abstraction over alternative mechanisms. Its dual capacity for single- and double-strand cleavage, coupled with oxidative versatility, underpins both therapeutic efficacy and toxicity .
Scientific Research Applications
Clinical Applications
Bleomycin has been widely utilized in the treatment of several malignancies. Its primary indications include:
- Hodgkin's Lymphoma: Often used in combination chemotherapy regimens such as ABVD (Adriamycin, this compound, Vinblastine, Dacarbazine).
- Testicular Cancer: Effective as part of combination therapy for germ cell tumors.
- Squamous Cell Carcinoma: Approved for use in head and neck cancers.
- Malignant Lymphoma: Utilized in treating both Hodgkin's and non-Hodgkin's lymphoma.
- Pleurodesis: Acts as a sclerosing agent to manage malignant pleural effusions by inducing adhesion of the lung to the chest wall .
Research Applications
In addition to its clinical uses, this compound serves as a critical tool in research, particularly in modeling pulmonary fibrosis:
Pulmonary Fibrosis Model
The administration of this compound to rodents is a standard model for studying idiopathic pulmonary fibrosis (IPF). This model helps researchers understand the disease's pathophysiology and evaluate potential antifibrotic therapies. Key findings from recent studies include:
- Interventional Timing: Studies indicate that timing interventions relative to this compound administration significantly affects outcomes. Early interventions (within 7 days) tend to focus on preventing fibrosis, while later interventions assess therapeutic efficacy .
- Study Characteristics: Between 2008 and 2019, approximately 74.4% of studies using this model investigated interventions aimed at fibrogenesis. A shift towards more therapeutic studies has been observed, reflecting a growing understanding of IPF and its treatment strategies .
Case Studies
Several notable case studies highlight the effectiveness and challenges associated with this compound:
- Case Study: Hodgkin's Lymphoma
- Case Study: Testicular Cancer
- Research Study: Pulmonary Fibrosis
Summary Table of this compound Applications
Application Area | Specific Uses | Notes |
---|---|---|
Clinical Oncology | Hodgkin's lymphoma, testicular cancer | Often combined with other agents for effectiveness |
Sclerotherapy | Malignant pleural effusions | Induces lung adhesion to prevent fluid accumulation |
Research Models | Pulmonary fibrosis studies | Helps evaluate antifibrotic therapies |
Mechanistic Studies | DNA damage response investigations | Provides insights into cancer cell biology |
Mechanism of Action
The primary mechanism of action of bleomycin involves its ability to bind to DNA and induce strand breaks . This compound forms a complex with metal ions, such as iron, creating a metallothis compound complex . This complex generates ROS, which cause oxidative damage to DNA, leading to single- and double-strand breaks . The DNA damage triggers cell cycle arrest and apoptosis, effectively killing cancer cells .
Comparison with Similar Compounds
Bleomycin belongs to the glycopeptide antibiotic family, which includes other compounds such as vancomycin and tallysomycin . Compared to these compounds, this compound is unique in its ability to induce DNA strand breaks through the formation of metallothis compound complexes . Vancomycin, for example, primarily targets bacterial cell wall synthesis, while tallysomycin shares a similar mechanism of action with this compound but has different clinical applications .
List of Similar Compounds:- Vancomycin
- Tallysomycin
- Calicheamicin
- Neocarzinostatin
This compound’s unique mechanism of action and its effectiveness in cancer therapy make it a valuable compound in both clinical and research settings.
Biological Activity
Bleomycin is a glycopeptide antibiotic derived from Streptomyces verticillus, primarily known for its use in cancer chemotherapy. Its biological activity encompasses a range of mechanisms that affect cellular processes, particularly in cancerous cells, but also extends to other biological systems, including antifungal activity and effects on telomerase activity.
This compound exerts its biological effects through several mechanisms:
- DNA Damage : this compound induces DNA strand breaks through oxidative stress, leading to the formation of free radicals. This action is particularly potent during the G2 phase of the cell cycle, inhibiting cell division and contributing to its antitumor effects .
- Telomerase Activity Modulation : Research indicates that this compound can modify telomerase activity in lung epithelial cells. Initially, this compound treatment results in an increase in telomerase activity, which may protect against apoptosis. However, prolonged exposure leads to a significant reduction in telomerase activity, correlating with increased apoptosis and potential lung fibrosis .
- Antifungal Properties : Recent studies have identified this compound as having significant antifungal activity. It disrupts mitochondrial function in fungal cells, leading to increased reactive oxygen species (ROS) generation and impaired phospholipid biosynthesis, essential for cell viability .
Clinical Applications
This compound is utilized not only in oncology but also in treating various benign conditions:
- Cancer Treatment : It is commonly used in combination chemotherapy regimens for testicular cancer and Hodgkin's lymphoma. The BEP regimen (this compound, Etoposide, and Cisplatin) is particularly effective for germ cell tumors .
- Treatment of Lymphangiomas : A study demonstrated that this compound injections resulted in an excellent response in 55% of pediatric patients with lymphangiomas, showcasing its effectiveness beyond malignancies .
- Wart Treatment : Intralesional this compound has been evaluated for treating common warts, showing a complete cure rate of approximately 84% after treatment sessions .
Case Study 1: this compound-Induced Lung Toxicity
A patient diagnosed with extragonadal non-seminomatous germ cell tumor underwent four cycles of BEP chemotherapy. Post-treatment imaging revealed pulmonary involvement attributed to this compound toxicity, highlighting the need for careful monitoring of pulmonary function during therapy .
Case Study 2: Efficacy in Lymphangiomas
In a cohort of 20 children treated with this compound for lymphangiomas, 55% exhibited an excellent response while 95% showed good response rates. This study underscores the efficacy of this compound in non-cancerous conditions and supports its continued use in clinical practice .
Telomerase Activity
A detailed investigation into the effects of this compound on telomerase activity revealed:
- In Vitro Studies : A significant elevation in mTERT mRNA and a transient increase in telomerase activity were observed within 24 hours post-treatment. However, by 72 hours, telomerase activity decreased significantly below baseline levels .
Time Point | Telomerase Activity Change (%) |
---|---|
24 hours | +41% |
48 hours | +12% |
72 hours | -26% |
Antifungal Mechanism
The antifungal mechanism of this compound was elucidated through studies showing its impact on mitochondrial integrity and phospholipid synthesis in yeast models. The compound's ability to induce oxidative stress was linked to its antifungal efficacy .
Properties
IUPAC Name |
3-[[2-[2-[2-[[(2S,3R)-2-[[(2S,3S,4R)-4-[[(2S,3R)-2-[[6-amino-2-[(1S)-3-amino-1-[[(2S)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[3-[4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-(1H-imidazol-5-yl)propanoyl]amino]-3-hydroxy-2-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]ethyl]-1,3-thiazol-4-yl]-1,3-thiazole-4-carbonyl]amino]propyl-dimethylsulfanium | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C55H83N17O21S3/c1-20-33(69-46(72-44(20)58)25(12-31(57)76)64-13-24(56)45(59)82)50(86)71-35(41(26-14-61-19-65-26)91-54-43(39(80)37(78)29(15-73)90-54)92-53-40(81)42(93-55(60)88)38(79)30(16-74)89-53)51(87)66-22(3)36(77)21(2)47(83)70-34(23(4)75)49(85)63-10-8-32-67-28(18-94-32)52-68-27(17-95-52)48(84)62-9-7-11-96(5)6/h14,17-19,21-25,29-30,34-43,53-54,64,73-75,77-81H,7-13,15-16,56H2,1-6H3,(H13-,57,58,59,60,61,62,63,65,66,69,70,71,72,76,82,83,84,85,86,87,88)/p+1/t21-,22+,23+,24-,25-,29?,30?,34-,35-,36-,37?,38?,39?,40?,41-,42?,43?,53?,54?/m0/s1 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
OYVAGSVQBOHSSS-WXFSZRTFSA-O | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CC1=C(N=C(N=C1N)C(CC(=O)N)NCC(C(=O)N)N)C(=O)NC(C(C2=CN=CN2)OC3C(C(C(C(O3)CO)O)O)OC4C(C(C(C(O4)CO)O)OC(=O)N)O)C(=O)NC(C)C(C(C)C(=O)NC(C(C)O)C(=O)NCCC5=NC(=CS5)C6=NC(=CS6)C(=O)NCCC[S+](C)C)O | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Isomeric SMILES |
CC1=C(N=C(N=C1N)[C@H](CC(=O)N)NC[C@@H](C(=O)N)N)C(=O)N[C@@H]([C@H](C2=CN=CN2)OC3C(C(C(C(O3)CO)O)O)OC4C(C(C(C(O4)CO)O)OC(=O)N)O)C(=O)N[C@H](C)[C@H]([C@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCCC5=NC(=CS5)C6=NC(=CS6)C(=O)NCCC[S+](C)C)O | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C55H84N17O21S3+ | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Related CAS |
9041-93-4 (sulfate (salt)) | |
Record name | Bleomycin [INN:BAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0011056067 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Molecular Weight |
1415.6 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Bleomycin appears as colorless or yellowish powder. Possible bluish color depending on copper content. (NTP, 1992), Solid | |
Record name | BLEOMYCIN | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/19884 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Bleomycin | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014435 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Solubility |
Soluble (NTP, 1992), Soluble, Colorless or yellowish powder which becomes bluish depending on copper content. Very sol in water, methanol; practically insol in acetone, ethyl acetate, butyl acetate, ether; slightly sol in ethanol. /Bleomycins/, HIGHLY SOL IN WATER & METHANOL; SPARINGLY SOL IN ALC; INSOL IN ACETONE & ETHYL ACETATE; CREAM-COLORED POWDER OR SOFT, FLUFFY LUMPS. /SULFATE SALT/, Freely soluble in water., Sol in water and methanol but insol in acetone and ether., 2.82e-02 g/L | |
Record name | BLEOMYCIN | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/19884 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Bleomycin | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00290 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | BLEOMYCIN | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3208 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Bleomycin | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014435 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Mechanism of Action |
Although the exact mechanism of action of bleomycin is unknown, available evidence would seem to indicate that the main mode of action is the inhibition of DNA synthesis with some evidence of lesser inhibition of RNA and protein synthesis. As evident in _in vitro_ studies, the DNA-cleaving actions of bleomycin is dependent on oxygen and metal ions. It is believed that bleomycin chelates metal ions (primarily iron) producing a pseudoenzyme that reacts with oxygen to produce superoxide and hydroxide free radicals that cleave DNA., Cytotoxic action of bleomycins results from their ability to cause fragmentation of DNA. Studies in vitro indicate that bleomycin causes accumulation of cells in the G2 phase of the cell cycle, and many of these cells display chromosomal aberrations, incl chromatid breaks, gaps, and fragments, as well as translocations. Bleomycin appears to cause scission of DNA by interacting with oxygen and iron(2+). In the presence of oxygen and a reducing agent, such as dithiothreitol, the metallobleomycin complex becomes activated and functions mechanistically as a ferrous oxidase, transferring electrons from iron(2) to molecular oxygen to produce activated species of oxygen. It has also been shown that metallobleomycin complexes can be activated by reaction with the flavin enzyme, NADPH-cytochrome p450 reductase. Bleomycin binds to DNA through its amino terminal peptide, and the activated complex generates free radicals that are responsible for scission of the DNA chain., Bleomycin is an antineoplastic antibiotic. The drug is active against gram-positive and gram-negative bacteria and fungi, but its cytotoxicity precludes its use as an anti-infective agent. The precise mechanism(s) of action of bleomycin is not fully known. Several studies in Escherichia coli and HeLa cells suggest that the drug inhibits the incorporation of thymidine into DNA. In these in vitro studies, DNA synthesis was inhibited to a greater extent than was RNA or protein synthesis. Bleomycin also appears to labilize the DNA structure, resulting in scission of both single- and double-stranded DNA. The drug has no immunosuppressive activity in mice., Bleomycin is classed as an antibiotic but is not used as an antimicrobial agent. Although bleomycin is effective against both cycling and non-cycling cells, it seems to be most effective in the G2 phase of cell division. Its exact mechanism of antineoplastic action is unknown but may involve binding to DNA, inducing lability of the DNA structure, and reduced synthesis of DNA, and to a lesser extent RNA and ptoteins., When administered into the pleural cavity in the treatment of malignant pleural effusion, /bleomycin/ acts as a sclerosing agent. | |
Record name | Bleomycin | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00290 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | BLEOMYCIN | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3208 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Color/Form |
Colorless to yellow powder | |
CAS No. |
11056-06-7 | |
Record name | BLEOMYCIN | |
Source | CAMEO Chemicals | |
URL | https://cameochemicals.noaa.gov/chemical/19884 | |
Description | CAMEO Chemicals is a chemical database designed for people who are involved in hazardous material incident response and planning. CAMEO Chemicals contains a library with thousands of datasheets containing response-related information and recommendations for hazardous materials that are commonly transported, used, or stored in the United States. CAMEO Chemicals was developed by the National Oceanic and Atmospheric Administration's Office of Response and Restoration in partnership with the Environmental Protection Agency's Office of Emergency Management. | |
Explanation | CAMEO Chemicals and all other CAMEO products are available at no charge to those organizations and individuals (recipients) responsible for the safe handling of chemicals. However, some of the chemical data itself is subject to the copyright restrictions of the companies or organizations that provided the data. | |
Record name | Bleomycin [INN:BAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0011056067 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Bleomycin | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00290 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | BLEOMYCIN | |
Source | Hazardous Substances Data Bank (HSDB) | |
URL | https://pubchem.ncbi.nlm.nih.gov/source/hsdb/3208 | |
Description | The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel. | |
Record name | Bleomycin | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014435 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
71 °C | |
Record name | Bleomycin | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00290 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Bleomycin | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014435 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Disclaimer and Information on In-Vitro Research Products
Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.