molecular formula C18H19ClN4 B1669256 氯氮平 CAS No. 5786-21-0

氯氮平

货号: B1669256
CAS 编号: 5786-21-0
分子量: 326.8 g/mol
InChI 键: QZUDBNBUXVUHMW-UHFFFAOYSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

科学研究应用

Pharmacological Profile and Mechanism of Action

Clozapine operates through multiple neurotransmitter systems, impacting serotonin, dopamine, and norepinephrine receptors. This broad action contributes to its efficacy in treating psychotic symptoms and reducing suicidal behavior in patients with schizophrenia.

Key Mechanisms:

  • Dopamine Receptor Antagonism: Clozapine primarily antagonizes D2 dopamine receptors, which helps alleviate psychotic symptoms.
  • Serotonin Receptor Modulation: It also affects 5-HT2A receptors, which may contribute to its lower risk of extrapyramidal side effects compared to first-generation antipsychotics.
  • Anti-Suicidal Properties: Research indicates that clozapine significantly reduces the risk of suicide in patients with schizophrenia and schizoaffective disorder .

Clinical Applications

Clozapine is indicated for:

  • Treatment-Resistant Schizophrenia: It is specifically approved for patients who have not responded adequately to at least two other antipsychotic medications. Studies show that clozapine can lead to a 10% reduction in overall mortality among these patients .
  • Suicidal Behavior Reduction: Clozapine is effective in decreasing the risk of recurrent suicidal behavior, making it a crucial option for high-risk patients .
  • Cognitive Improvement: Some studies suggest that clozapine may enhance cognitive functioning, particularly in working memory, due to its metabolite N-desmethylclozapine .

Efficacy and Safety

A systematic review highlighted the superior efficacy of clozapine compared to both first-generation and second-generation antipsychotics. The meta-analysis included data from 112 studies, confirming clozapine's effectiveness across various psychotic disorders .

Adverse Effects:
Despite its benefits, clozapine is associated with significant risks:

  • Severe Neutropenia: Regular monitoring of white blood cell counts is required due to the risk of agranulocytosis.
  • Seizures: The risk increases with higher doses.
  • Metabolic Syndrome: Weight gain and metabolic changes are common side effects .

Case Study 1: Treatment-Resistant Schizophrenia

A 30-year-old female patient diagnosed with treatment-resistant schizophrenia was treated with clozapine after failing multiple antipsychotic regimens. Following initiation at a low dose (12.5 mg), her symptoms improved significantly over several weeks, demonstrating clozapine's effectiveness in managing severe psychotic symptoms .

Case Study 2: Acute Psychotic Relapse

In another case, a 57-year-old female patient experienced an acute relapse while on clozapine. Adjustments to her medication regimen led to stabilization after a dose reduction from 700 mg/day to a more manageable level. This case illustrates the need for careful monitoring and dose adjustments during treatment .

Data Summary

ApplicationDescriptionEvidence Source
Treatment-Resistant SchizophreniaApproved for patients unresponsive to other treatments
Suicidal Behavior ReductionSignificantly lowers suicide risk in high-risk patients
Cognitive ImprovementPotential enhancement of working memory and cognitive functions
Side EffectsRisks include severe neutropenia, seizures, and metabolic syndrome

化学反应分析

反应类型: 氯氮平会发生各种化学反应,包括氧化、还原和取代 .

常用试剂和条件:

形成的主要产物: 这些反应形成的主要产物包括各种氯氮平衍生物,它们可能具有不同的药理特性 .

生物活性

Clozapine is an atypical antipsychotic medication primarily used for treatment-resistant schizophrenia (TRS). Its unique pharmacological profile and biological activity distinguish it from other antipsychotics, making it a subject of extensive research. This article delves into the biological activity of clozapine, its mechanisms of action, clinical findings, and relevant case studies.

Clozapine exhibits a complex pharmacological profile, interacting with multiple neurotransmitter systems. Notably, it has a low affinity for dopamine D2 receptors compared to first-generation antipsychotics. Instead, clozapine acts as an antagonist at various receptors:

Receptor Type Binding Affinity (Ki)
Histamine H11.1 nM
Adrenergic α1A1.6 nM
Serotonin 5-HT64 nM
Serotonin 5-HT2A5.4 nM
Muscarinic M16.2 nM
Dopamine D424 nM
Dopamine D2160 nM

This diverse receptor binding profile suggests that clozapine's efficacy in treating TRS may stem from its ability to modulate neurotransmission across multiple pathways, including serotonergic and glutamatergic systems .

Clinical Efficacy and Patient Experiences

Clozapine is particularly effective in patients who do not respond to other antipsychotic treatments. A systematic review involving 1,487 patients indicated that most reported positive experiences with clozapine, highlighting significant symptom improvement and overall satisfaction despite some common side effects such as hypersalivation and weight gain .

Case Study: Cognitive Effects

A notable case study examined the cognitive effects of clozapine on a patient with TRS. The findings suggested that cognitive impairment could be dose-dependent, emphasizing the need for careful monitoring of dosage to optimize therapeutic outcomes while minimizing adverse effects .

Neurobiological Effects

Research indicates that clozapine influences neurobiological functioning in patients with TRS. For instance, a study by Molina et al. demonstrated that clozapine treatment was associated with reductions in prefrontal cortical metabolic activity, which correlated with improvements in both positive and negative symptoms of schizophrenia . This suggests that alterations in brain metabolism may play a crucial role in the drug's therapeutic effects.

Metabolite Activity

Clozapine is metabolized into several active metabolites, including N-desmethylclozapine. Studies have shown that this metabolite retains biological activity and can influence Fos protein expression in specific brain regions, mirroring the effects of clozapine itself . This finding underscores the importance of considering both the parent compound and its metabolites when evaluating clozapine's overall pharmacological impact.

Safety Profile

Concerns regarding the safety of clozapine have been addressed in recent studies. A large cohort study conducted by researchers at the University of Hong Kong found that the risk of developing blood cancer associated with clozapine use is very low—less than six cases per 10,000 patients treated annually . These findings support the continued use of clozapine in clinical practice while emphasizing the importance of regular blood monitoring to mitigate risks.

属性

IUPAC Name

3-chloro-6-(4-methylpiperazin-1-yl)-11H-benzo[b][1,4]benzodiazepine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C18H19ClN4/c1-22-8-10-23(11-9-22)18-14-4-2-3-5-15(14)20-16-7-6-13(19)12-17(16)21-18/h2-7,12,20H,8-11H2,1H3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

QZUDBNBUXVUHMW-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CN1CCN(CC1)C2=NC3=C(C=CC(=C3)Cl)NC4=CC=CC=C42
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C18H19ClN4
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID5022855, DTXSID401020663
Record name Clozapine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID5022855
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 8-Chloro-11-(4-methyl-1-piperazinyl)-10H-dibenzo[b,e][1,4]diazepine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID401020663
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

326.8 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Clozapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014507
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

Solubility wt/wt at 25 °C: water <0.01, Solubility wt/wt at 25 °C: Acetone >5; acetonitrile 1.9; chloroform >20; ethhyl acetate >5; absolute ethanol 4.0, 1.86e-01 g/L
Record name Clozapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00363
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name CLOZAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6478
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Clozapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014507
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Clozapine's antipsychotic action is likely mediated through a combination of antogistic effects at D2 receptors in the mesolimbic pathway and 5-HT2A receptors in the frontal cortex. D2 antagonism relieves positive symptoms while 5-HT2A antagonism alleviates negative symptoms., Clozapine is classified as an 'atypical' antipsychotic drug because its profile of binding to dopamine receptors and its effects on various dopamine mediated behaviors differ from those exhibited by more typical antipsychotic drug products. In particular, although clozapine does interfere with the binding of dopamine at D1, D2, D3 and D5 receptors, and has a high affinity for the D4 receptor, it does not induce catalepsy nor inhibit apomorphine-induced stereotypy. This evidence, consistent with the view that clozapine is preferentially more active at limbic than at striatal dopamine receptors, may explain the relative freedom of clozapine from extrapyramidal side effects. Clozapine also acts as an antagonist at adrenergic, cholinergic, histaminergic and serotonergic receptors.
Record name Clozapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00363
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name CLOZAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6478
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Color/Form

Yellow crystals from acetone-petroleum ether

CAS No.

5786-21-0, 1333667-72-3
Record name Clozapine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=5786-21-0
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Clozapine [USAN:USP:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0005786210
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Clozapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00363
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name clozapine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757429
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Clozapine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID5022855
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 8-Chloro-11-(4-methyl-1-piperazinyl)-10H-dibenzo[b,e][1,4]diazepine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID401020663
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Clozapine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.024.831
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name CLOZAPINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/J60AR2IKIC
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name CLOZAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6478
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Clozapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014507
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Melting Point

183-184 °C, 183 - 184 °C
Record name Clozapine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00363
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name CLOZAPINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6478
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name Clozapine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014507
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Clozapine
Reactant of Route 2
Clozapine
Reactant of Route 3
Clozapine
Reactant of Route 4
Clozapine
Reactant of Route 5
Clozapine
Reactant of Route 6
Clozapine

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。