molecular formula C17H16F6N2O B1676156 Mefloquine CAS No. 53230-10-7

Mefloquine

カタログ番号: B1676156
CAS番号: 53230-10-7
分子量: 378.31 g/mol
InChIキー: XEEQGYMUWCZPDN-DOMZBBRYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

準備方法

メフロキンは、2,8-ビス(トリフルオロメチル)キノリンとピペリジンを反応させる複数段階のプロセスによって合成されます . 合成経路には一般的に以下が含まれます。

    キノリン環の形成: これは、適切な前駆体を酸性条件下で環化することによって行われます。

    トリフルオロメチル基の導入: この工程は、トリフルオロメチル化剤を使用することによって達成されます。

    ピペリジン部分の結合: これは、求核置換反応によって行われます。

工業的な製造方法では、これらの工程を最適化して、高収率と高純度を確保するために、大規模反応器と厳格な品質管理対策が用いられます .

化学反応解析

メフロキンは、いくつかのタイプの化学反応を起こします。

これらの反応で一般的に使用される試薬には、トリフルオロメチル化剤、環化のための酸、置換のための求核剤があります。 これらの反応によって生成される主な生成物は、医薬品有効成分とその代謝物です .

科学研究への応用

メフロキンは、さまざまな科学研究に広く応用されています。

化学反応の分析

Mefloquine undergoes several types of chemical reactions:

Common reagents used in these reactions include trifluoromethylating agents, acids for cyclization, and nucleophiles for substitution. The major products formed from these reactions are the active pharmaceutical ingredient and its metabolites .

科学的研究の応用

Mefloquine is a drug traditionally used to treat malaria, but research has shown it to have other potential applications, including use as an antibiotic adjuvant, antiviral, and antitumor agent .

Antibiotic Adjuvant

This compound has emerged as a promising antibiotic adjuvant because of its ability to enhance the effectiveness of conventional antibiotics against resistant bacterial strains . this compound exhibits synergistic bacteriostatic effects when combined with antibiotics, including colistin, β-lactams, antituberculosis drugs, quinolones, and linezolid . Potential mechanisms underlying these synergistic effects include the inhibition of antibiotic efflux, disruption of bacterial cell membrane integrity, and disturbance of biofilm formation .

Antiviral Effects

This compound has demonstrated antiviral activity against SARS-CoV-2 by inhibiting the viral entry process after the virus attaches to the cell . Mathematical modeling suggests that this compound administration could reduce viral dynamics in patients, reducing the cumulative viral load and shortening the period until virus elimination in clinical concentration ranges .

Antitumor Effects

This compound has demonstrated antitumor effects against several cancers .

Cancer TypeThis compound Activity
Acute Myeloid LeukemiaSelectively kills acute myeloid leukemia cells and progenitor cells by disrupting lysosomes .
Melanoma and Lung CancerInduces tumor ferroptosis via IFN-γ-STAT1-IRF1-LPCAT3, enhancing the efficacy of anti-programmed cell death 1 (PD-1) immunotherapy .

Inhibition of Multiple Membrane Channels

This compound has been shown to inhibit multiple membrane channels . It acts as an antagonist of the cardiac potassium channel, KvLQT1/minK, and slows its activation . this compound also effectively blocks volume-regulated and calcium-activated chloride channels .

Malaria Prophylaxis

This compound is used for malaria prophylaxis in nonimmune travelers . However, atovaquone-proguanil was better tolerated than this compound and similarly effective for malaria .

Neuropsychiatric Symptoms

A case study reported the development of acute neuropsychiatric symptoms in a 10-year-old boy after returning from travel in Africa, where he had taken this compound . A 4-week course of cognitive-behavioral therapy effectively treated this substance-induced anxiety disorder caused by this compound . The study highlights the importance of obtaining travel histories, including exposure to prophylactic medication, when patients present with acute-onset psychiatric symptoms .

Long-term Neurocognitive Effects

Some case studies have reported word-finding, processing speed, verbal learning, auditory and visual memory, motor speed, and motor learning deficits as side effects of this compound use . Other case studies reported neurobehavioral/neurologic symptoms, vestibular dysfunction, and mild impairment in fine motor dexterity and processing speed . One case study reported long-term symptoms of self-reported dizziness, short-term memory, vivid dreams/nightmares, and vestibulopathy persisted .

Prolonged Visual Illusions

Prolonged visual illusions have been reported as a result of this compound use .

Babesiosis

類似化合物との比較

Mefloquine is part of the quinoline-methanol class of antimalarial drugs. Similar compounds include:

This compound is unique in its long half-life, allowing for weekly dosing, and its efficacy against chloroquine-resistant strains . it is also associated with neuropsychiatric side effects, which limits its use in certain populations .

生物活性

Mefloquine is a synthetic antimalarial drug that has garnered attention for its diverse biological activities beyond its primary use in treating malaria. This article delves into the compound's mechanisms of action, its effects on various pathogens, and associated neuropsychiatric outcomes, supported by case studies and research findings.

Chemical Profile

  • Chemical Name : (α S)- rel-α-(2 R)-2-Piperidinyl-2,3-bis(trifluoromethyl-4-quinolinemethanol hydrochloride
  • Purity : ≥98%
  • Molecular Weight : 433.87 g/mol

This compound exhibits multiple biological activities:

  • Antimalarial Activity :
    • This compound targets the Plasmodium falciparum 80S ribosome, inhibiting protein synthesis, which is crucial for the survival of the malaria parasite. It has shown efficacy in improving survival rates in P. berghei-infected mice .
  • Antischistosomal Activity :
    • The compound demonstrates both in vitro and in vivo activity against Schistosoma mansoni, suggesting potential for broader parasitic infections treatment .
  • Antiviral Properties :
    • Recent studies indicate this compound has antiviral activity against SARS-CoV-2 with an IC50 of less than 10 μM, showcasing its potential in combating viral infections .
  • Antifungal Activity :
    • This compound derivatives have been found to possess broad-spectrum antifungal activity against resistant strains of fungi such as Candida auris, indicating a novel mechanism that could be exploited for therapeutic purposes .
  • Neuropharmacological Effects :
    • This compound acts as a gap junction blocker (Cx36 and Cx50), influencing neuronal communication and potentially affecting neurocognitive functions .

Neuropsychiatric Outcomes

Despite its therapeutic benefits, this compound has been associated with various neuropsychiatric side effects:

  • A cohort study indicated that veterans exposed to this compound reported poorer health outcomes and greater neurobehavioral symptoms compared to unexposed individuals .
  • Commonly reported symptoms include:
    • Word-finding difficulties
    • Processing speed deficits
    • Auditory and visual memory issues
    • Dizziness and vivid dreams .

Case Studies

A selection of case studies highlights the complexities surrounding this compound's effects:

  • One study documented persistent symptoms such as dizziness and memory issues in a veteran population following this compound exposure, despite overall neuropsychological assessments appearing normal .
  • Another case highlighted vestibular dysfunction linked to this compound use, underscoring the need for careful monitoring in patients prescribed this medication .

Comparative Efficacy Against Pathogens

The following table summarizes the comparative efficacy of this compound against various pathogens:

PathogenMechanism of ActionIC50/MIC Values
Plasmodium falciparumInhibition of protein synthesisNot specified
Schistosoma mansoniDisruption of metabolic processesNot specified
Candida aurisDisruption of cell membrane integrityImproved by 8-64 fold
Mycobacterium abscessusInterference with mycolic acid biosynthesisMIC = 16 μg/mL

特性

IUPAC Name

(S)-[2,8-bis(trifluoromethyl)quinolin-4-yl]-[(2R)-piperidin-2-yl]methanol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C17H16F6N2O/c18-16(19,20)11-5-3-4-9-10(15(26)12-6-1-2-7-24-12)8-13(17(21,22)23)25-14(9)11/h3-5,8,12,15,24,26H,1-2,6-7H2/t12-,15+/m1/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

XEEQGYMUWCZPDN-DOMZBBRYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CCNC(C1)C(C2=CC(=NC3=C2C=CC=C3C(F)(F)F)C(F)(F)F)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C1CCN[C@H](C1)[C@H](C2=CC(=NC3=C2C=CC=C3C(F)(F)F)C(F)(F)F)O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C17H16F6N2O
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID4037168, DTXSID101019853
Record name Mefloquine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID4037168
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name (-)-Mefloquine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID101019853
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

378.31 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Density

Crystal density: 1.432 g/cu cm
Record name MEFLOQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6853
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Mechanism of Action

Mefloquine, like chloroquine and quinine, is a blood schizonticidal agent and is active against the intraerythrocytic stages of parasite development. Similar to chloroquine and quinine, mefloquine appears to interfere with the parasite's ability to metabolize and utilize erythrocyte hemoglobin. The antimalarial activity of mefloquine may depend on the ability of the drug to form hydrogen bonds with cellular constituents; results of structure-activity studies indicate that the orientation of the hydroxyl and amine groups with respect to each other in the mefloquine molecule may be essential for antimalarial activity. While the precise mechanism of action of mefloquine is unknown, it may involve mechanisms that differ from those proposed for chloroquine., The effects of the antimalarial drug, mefloquine, on the uptake and release of Ca2+ by crude microsomes from dog brain were investigated using a spectrophotometric method. Mefloquine inhibited the inositol-1,4,5-phosphate (IP3)-induced Ca2+ release with an IC50 of 42 uM, but was a weaker inhibitor of the uptake of Ca2+ into the vesicles (IC50: 272 uM). These effects of mefloquine are in contrast to its actions on Ca2+ uptake and release by skeletal muscle microsomes, where its predominant effect was seen to be the inhibition of Ca2+ uptake into the vesicles. Mefloquine was found to be more potent than quinine as a specific inhibitor of Ca2+ release from IP3-sensitive stores in dog brain microsomes. The possibility of the drug affecting cellular IP3-linked signal transduction processes should be considered.
Record name MEFLOQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6853
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

CAS No.

51742-87-1, 53230-10-7
Record name (+)-Mefloquine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=51742-87-1
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Mefloquine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=53230-10-7
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name (-)-Mefloquine
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0051742871
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Mefloquine [USAN:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0053230107
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Mefloquine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID4037168
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name (-)-Mefloquine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID101019853
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name MEFLOQUINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/TML814419R
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name MEFLOQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6853
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Melting Point

174-176 °C
Record name MEFLOQUINE
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6853
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Mefloquine
Reactant of Route 2
Mefloquine
Reactant of Route 3
Reactant of Route 3
Mefloquine
Reactant of Route 4
Mefloquine
Reactant of Route 5
Mefloquine
Reactant of Route 6
Mefloquine

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。