
Fluoxetine
Descripción general
Descripción
La fluoxetina es un antidepresivo ampliamente utilizado que pertenece a la clase de los inhibidores selectivos de la recaptación de serotonina. Se prescribe principalmente para el tratamiento del trastorno depresivo mayor, el trastorno obsesivo-compulsivo, la bulimia nerviosa, el trastorno de pánico y el trastorno disfórico premenstrual . La fluoxetina se introdujo por primera vez a finales de la década de 1980 y desde entonces se ha convertido en uno de los antidepresivos más recetados en todo el mundo.
Métodos De Preparación
Rutas sintéticas y condiciones de reacción: La fluoxetina se puede sintetizar a través de múltiples rutas sintéticas. Un método común implica la reacción de 3-cloropropiofenona con 4-(trifluorometil)fenol en presencia de una base para formar 3-(4-(trifluorometil)fenoxi)propiofenona. Este intermedio se hace reaccionar luego con metilamina para producir fluoxetina .
Métodos de producción industrial: La producción industrial de fluoxetina a menudo emplea técnicas de procesamiento continuo de flujo. Este método ofrece ventajas sobre el procesamiento por lotes tradicional, que incluyen un mejor control de la reacción, mayores rendimientos y mayor seguridad .
Análisis De Reacciones Químicas
Metabolic Pathways
Fluoxetine undergoes extensive hepatic metabolism involving phase I oxidation and phase II conjugation :
Phase I Metabolism:
Enzyme | Reaction Type | Metabolite(s) | Pharmacological Activity |
---|---|---|---|
CYP2D6/CYP2C19 | N-Demethylation | Northis compound | Active (long half-life: 7–15 days) |
CYP3A4/CYP2C9 | O-Dealkylation | Para-trifluoromethylphenol (PTMP) | Inactive (converted to hippuric acid) |
Phase II Metabolism:
-
Glucuronidation : Both this compound and northis compound form glucuronide conjugates via UGT1A3/2B7, facilitating renal excretion .
Key Findings :
-
Northis compound retains 20–30% of the parent drug’s serotonin reuptake inhibition potency .
-
CYP2D6 inhibition by this compound/northis compound contributes to drug-drug interactions (e.g., reduced metabolism of tricyclic antidepressants) .
Stereochemical Considerations
Racemic this compound consists of R- and S-enantiomers , with distinct metabolic profiles :
-
R-Fluoxetine : Slower clearance compared to S-fluoxetine (t₁/₂: 2–3 days vs. 1–2 days).
-
S-Northis compound : Primary active metabolite, accounting for 37–83% of total serum drug activity .
Comparative Data :
Parameter | Racemic this compound | R-Fluoxetine |
---|---|---|
Serum t₁/₂ (days) | 4–6 | 2–3 |
Active Metabolite | S-Northis compound | None |
Stability and Degradation
Aplicaciones Científicas De Investigación
La fluoxetina tiene una amplia gama de aplicaciones de investigación científica:
Química: La fluoxetina se utiliza como compuesto de referencia en el desarrollo de nuevos inhibidores selectivos de la recaptación de serotonina.
Biología: Se emplea en estudios que investigan el papel de la serotonina en diversos procesos biológicos.
Mecanismo De Acción
La fluoxetina ejerce sus efectos inhibiendo la recaptación de serotonina, un neurotransmisor, en el cerebro. Esta inhibición aumenta los niveles de serotonina en la hendidura sináptica, mejorando la neurotransmisión y el estado de ánimo . La fluoxetina se dirige principalmente al transportador de serotonina, pero también tiene efectos leves sobre los transportadores de norepinefrina y dopamina .
Comparación Con Compuestos Similares
La fluoxetina se compara a menudo con otros inhibidores selectivos de la recaptación de serotonina, como:
- Citalopram
- Escitalopram
- Paroxetina
- Sertralina
Singularidad: La fluoxetina es única debido a su larga vida media, lo que permite la dosificación una vez al día y reduce el riesgo de síntomas de abstinencia . Además, su metabolito activo, la norfluoxetina, contribuye a sus efectos terapéuticos prolongados .
Actividad Biológica
Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is widely used in the treatment of depression, anxiety disorders, and other psychiatric conditions. Its biological activity primarily revolves around its ability to modulate serotonin levels in the brain, which has profound effects on mood and behavior. This article explores the biological activity of this compound, focusing on its mechanisms of action, pharmacokinetics, clinical efficacy, and safety profile, supported by data tables and case studies.
This compound functions by inhibiting the serotonin reuptake transporter (SERT) in the presynaptic neuron. This inhibition leads to increased levels of serotonin (5-HT) in the synaptic cleft, enhancing serotonergic neurotransmission. The primary metabolic pathway involves conversion to its active metabolite, northis compound, through cytochrome P450 enzymes (CYP1A2, CYP2D6, etc.) .
Table 1: Key Pharmacokinetic Properties of this compound
Property | Value |
---|---|
Half-life (this compound) | 2-4 days |
Half-life (Northis compound) | 7-9 days |
Major Metabolizing Enzymes | CYP2D6, CYP2C9, CYP3A4 |
Bioavailability | 60% |
Clinical Efficacy
This compound has been shown to be effective in various clinical settings. A meta-analysis involving 9,087 patients across 87 randomized controlled trials confirmed its efficacy in treating major depressive disorder from the first week of therapy . Additionally, this compound has been found effective for bulimia nervosa and panic disorder.
Case Study: Efficacy in Depression
In a study analyzing this compound's effects on elderly patients with depression, results indicated significant improvements in depressive symptoms without an increased risk of suicide compared to placebo .
Table 2: Summary of Clinical Trials Evaluating this compound
Study Type | Population | Outcome | Result |
---|---|---|---|
RCT (Major Depression) | 9087 patients | Efficacy | Effective from week 1 |
RCT (Bulimia Nervosa) | Various | Efficacy | Comparable to other agents |
RCT (Post-Stroke Recovery) | 6788 patients | Functional Improvement | Improved Fugl-Meyer scores |
Safety Profile and Side Effects
This compound is generally well-tolerated; however, it does carry risks of side effects. Common adverse events include gastrointestinal disturbances, insomnia, and sexual dysfunction. Notably, there is an increased risk of bone fractures associated with this compound use .
Table 3: Common Side Effects of this compound
Side Effect | Incidence Rate (%) |
---|---|
Nausea | 20 |
Insomnia | 15 |
Sexual Dysfunction | 10 |
Weight Gain | 5 |
Individual Variability in Response
Research indicates that individual genetic differences can affect responses to this compound. A study on juvenile rhesus monkeys identified biomarkers associated with this compound response and impulsivity linked to monoamine oxidase A (MAOA) gene polymorphisms . This suggests that personalized medicine approaches may enhance treatment outcomes.
Q & A
Basic Research Questions
Q. What established methodologies are recommended for assessing Fluoxetine's pharmacokinetics in preclinical models?
To evaluate this compound's absorption, distribution, metabolism, and excretion (ADME), researchers should employ high-performance liquid chromatography (HPLC) or mass spectrometry for precise quantification in biological samples. Tissue distribution studies require organ-specific sampling at multiple time points, validated against standardized protocols to ensure reproducibility . Experimental designs should include control groups for endogenous compound interference and use species-specific metabolic profiles to account for interspecies variability.
Q. How can the PICOT framework structure clinical trials investigating this compound's efficacy in treatment-resistant depression?
Using the PICOT framework:
- Population : Adults diagnosed with major depressive disorder (MDD) unresponsive to two prior antidepressants.
- Intervention : this compound (20–80 mg/day) over 8 weeks.
- Comparison : Placebo or active comparator (e.g., sertraline).
- Outcome : Change in Hamilton Depression Rating Scale (HAM-D) scores .
- Time : 12-week follow-up. This design ensures clarity in hypothesis testing and minimizes confounding variables .
Q. What validated behavioral assays are used to assess this compound's anxiolytic effects in rodent models?
The elevated plus maze (EPM) and forced swim test (FST) are gold standards. For reproducibility:
- Standardize testing conditions (e.g., lighting, time of day).
- Include blinded scoring of immobility time (FST) or open-arm exploration (EPM).
- Control for baseline anxiety levels using genetic or environmental manipulations (e.g., chronic mild stress) .
Advanced Research Questions
Q. How can conflicting data on this compound's impact on synaptic plasticity be reconciled across studies?
Contradictions often arise from methodological differences:
- Dosage : Low-dose this compound (5 mg/kg) may enhance hippocampal neurogenesis, while high doses (20 mg/kg) impair it.
- Exposure duration : Acute vs. chronic administration differentially affects BDNF signaling.
- Model systems : Human iPSC-derived neurons vs. rodent models show variability in serotonin transporter (SERT) expression. Meta-analyses should stratify results by these variables and assess publication bias using funnel plots .
Q. What experimental designs are optimal for studying this compound's neurodevelopmental effects in autism spectrum disorder (ASD) models?
Fractional factorial designs allow multiplexed testing of environmental factors (e.g., this compound, lead exposure) across genetic backgrounds. For example:
- Expose human iPSC-derived neural progenitors to this compound (1 µM) during critical neurodevelopmental windows.
- Combine transcriptomic (RNA-seq) and metabolomic (LC-MS) profiling to identify pathway-specific effects (e.g., synaptic function, lipid metabolism) .
- Validate findings in in vivo models with conditional SERT knockout to isolate serotoninergic mechanisms.
Q. How do multi-omics approaches clarify this compound's role in lipid metabolism dysregulation?
Integrate transcriptomics, lipidomics, and proteomics:
- Transcriptomics : Identify this compound-induced upregulation of FASN (fatty acid synthase) in hepatic cells.
- Lipidomics : Quantify triglycerides and phospholipids via tandem mass spectrometry.
- Proteomics : Assess PPAR-α/γ activity to link gene expression changes to metabolic outcomes. Data integration tools (e.g., weighted gene co-expression networks) can pinpoint causal pathways .
Q. What statistical methods address heterogeneity in this compound's therapeutic response across demographic subgroups?
Apply mixed-effects models to account for covariates like age, sex, and genetic polymorphisms (e.g., SLC6A4 variants). Cluster analysis can identify responder/non-responder subgroups based on metabolomic profiles or HAM-D score trajectories. Sensitivity analyses should test robustness against missing data .
Q. Methodological Considerations
- Data Contradiction Analysis : Use PRISMA guidelines for systematic reviews to evaluate this compound studies. Assess risk of bias via Cochrane tools and perform subgroup analyses by dose, duration, and population .
- Reproducibility : Share raw data and code in repositories like Zenodo or Figshare. Pre-register protocols on Open Science Framework (OSF) to reduce selective reporting .
- Ethical Frameworks : Adhere to FINER criteria (Feasible, Interesting, Novel, Ethical, Relevant) when designing studies involving vulnerable populations (e.g., adolescents, pregnant individuals) .
Propiedades
IUPAC Name |
N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine | |
---|---|---|
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI |
InChI=1S/C17H18F3NO/c1-21-12-11-16(13-5-3-2-4-6-13)22-15-9-7-14(8-10-15)17(18,19)20/h2-10,16,21H,11-12H2,1H3 | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
InChI Key |
RTHCYVBBDHJXIQ-UHFFFAOYSA-N | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Canonical SMILES |
CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)F | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Molecular Formula |
C17H18F3NO | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Related CAS |
59333-67-4 (hydrochloride) | |
Record name | Fluoxetine [USAN:INN:BAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0054910893 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
DSSTOX Substance ID |
DTXSID7023067 | |
Record name | Fluoxetine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID7023067 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Molecular Weight |
309.33 g/mol | |
Source | PubChem | |
URL | https://pubchem.ncbi.nlm.nih.gov | |
Description | Data deposited in or computed by PubChem | |
Physical Description |
Solid | |
Record name | Fluoxetine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014615 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Boiling Point |
395.1°C at 760 mmHg | |
Record name | Fluoxetine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00472 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Solubility |
insoluble, 1.70e-03 g/L | |
Record name | Fluoxetine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00472 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Fluoxetine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014615 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Mechanism of Action |
The monoaminergic hypothesis of depression emerged in 1965 and linked depression with dysfunction of neurotransmitters such as noradrenaline and serotonin. Indeed, low levels of serotonin have been observed in the cerebrospinal fluid of patients diagnosed with depression. As a result of this hypothesis, drugs that modulate levels of serotonin such as fluoxetine were developed. Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) and as the name suggests, it exerts it's therapeutic effect by inhibiting the presynaptic reuptake of the neurotransmitter serotonin. As a result, levels of 5-hydroxytryptamine (5-HT) are increased in various parts of the brain. Further, fluoxetine has high affinity for 5-HT transporters, weak affinity for noradrenaline transporters and no affinity for dopamine transporters indicating that it is 5-HT selective. Fluoxetine interacts to a degree with the 5-HT2C receptor and it has been suggested that through this mechanism, it is able to increase noradrenaline and dopamine levels in the prefrontal cortex. | |
Record name | Fluoxetine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00472 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
CAS No. |
54910-89-3, 57226-07-0 | |
Record name | Fluoxetine | |
Source | CAS Common Chemistry | |
URL | https://commonchemistry.cas.org/detail?cas_rn=54910-89-3 | |
Description | CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society. | |
Explanation | The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated. | |
Record name | Fluoxetine [USAN:INN:BAN] | |
Source | ChemIDplus | |
URL | https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0054910893 | |
Description | ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system. | |
Record name | Fluoxetine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00472 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | NSC-283480 | |
Source | DTP/NCI | |
URL | https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=283480 | |
Description | The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents. | |
Explanation | Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source. | |
Record name | Fluoxetine | |
Source | EPA DSSTox | |
URL | https://comptox.epa.gov/dashboard/DTXSID7023067 | |
Description | DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology. | |
Record name | Benzenepropanamine, N-methyl-γ-[4-(trifluoromethyl)phenoxy] | |
Source | European Chemicals Agency (ECHA) | |
URL | https://echa.europa.eu/substance-information/-/substanceinfo/100.125.370 | |
Description | The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness. | |
Explanation | Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page. | |
Record name | FLUOXETINE | |
Source | FDA Global Substance Registration System (GSRS) | |
URL | https://gsrs.ncats.nih.gov/ginas/app/beta/substances/01K63SUP8D | |
Description | The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions. | |
Explanation | Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required. | |
Record name | Fluoxetine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014615 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Melting Point |
179 - 182 °C | |
Record name | Fluoxetine | |
Source | DrugBank | |
URL | https://www.drugbank.ca/drugs/DB00472 | |
Description | The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. | |
Explanation | Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode) | |
Record name | Fluoxetine | |
Source | Human Metabolome Database (HMDB) | |
URL | http://www.hmdb.ca/metabolites/HMDB0014615 | |
Description | The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body. | |
Explanation | HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications. | |
Synthesis routes and methods I
Procedure details
Synthesis routes and methods II
Procedure details
Synthesis routes and methods III
Procedure details
Synthesis routes and methods IV
Procedure details
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
Descargo de responsabilidad e información sobre productos de investigación in vitro
Tenga en cuenta que todos los artículos e información de productos presentados en BenchChem están destinados únicamente con fines informativos. Los productos disponibles para la compra en BenchChem están diseñados específicamente para estudios in vitro, que se realizan fuera de organismos vivos. Los estudios in vitro, derivados del término latino "in vidrio", involucran experimentos realizados en entornos de laboratorio controlados utilizando células o tejidos. Es importante tener en cuenta que estos productos no se clasifican como medicamentos y no han recibido la aprobación de la FDA para la prevención, tratamiento o cura de ninguna condición médica, dolencia o enfermedad. Debemos enfatizar que cualquier forma de introducción corporal de estos productos en humanos o animales está estrictamente prohibida por ley. Es esencial adherirse a estas pautas para garantizar el cumplimiento de los estándares legales y éticos en la investigación y experimentación.