molecular formula C₈H₁₄D₄ClNO₅ B1146203 Miglitol-d4 Hydrochloride CAS No. 1346597-27-0

Miglitol-d4 Hydrochloride

Numéro de catalogue: B1146203
Numéro CAS: 1346597-27-0
Poids moléculaire: 247.71
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Méthodes De Préparation

Analyse Des Réactions Chimiques

Types of Reactions

Miglitol-d4 Hydrochloride undergoes various chemical reactions, including:

Common Reagents and Conditions

Common reagents used in the reactions involving this compound include 9-fluorenylmethyl chloroformate for derivatization and sodium borate for maintaining the pH during reactions . The conditions often involve controlled temperatures and pH levels to ensure the desired reaction outcomes.

Major Products Formed

The major products formed from the reactions involving this compound include various deuterated intermediates and the final deuterated Miglitol compound .

Applications De Recherche Scientifique

Diabetes Management

  • Postprandial Glucose Control : Clinical studies have demonstrated that Miglitol-d4 effectively lowers postprandial blood glucose levels in patients with Type 2 diabetes. This is crucial for managing overall glycemic control and reducing the risk of diabetes-related complications .
  • Combination Therapy : It is often used in combination with other antidiabetic medications, such as metformin or insulin, to enhance glycemic control .

Cardiovascular Health

Research indicates that managing blood glucose levels effectively can reduce cardiovascular risks associated with diabetes. Miglitol-d4's role in stabilizing blood sugar levels may contribute to improved cardiovascular outcomes in diabetic patients .

Pharmacokinetic Studies

The deuterated nature of Miglitol-d4 allows for advanced pharmacokinetic studies using mass spectrometry techniques. These studies can provide insights into the absorption, distribution, metabolism, and excretion (ADME) of the drug, which is essential for understanding its efficacy and safety profile .

Metabolic Studies

Miglitol-d4 has been utilized in metabolic studies to explore its effects on carbohydrate metabolism and insulin sensitivity. These studies can help elucidate the mechanisms by which alpha-glucosidase inhibitors affect metabolic pathways in diabetic patients .

Case Study 1: Efficacy in Type 2 Diabetes Management

A clinical trial involving a cohort of Type 2 diabetes patients demonstrated that those treated with Miglitol-d4 showed significant reductions in HbA1c levels compared to a control group receiving standard care. The trial highlighted the compound's effectiveness in controlling long-term blood glucose levels .

Case Study 2: Impact on Cardiovascular Outcomes

A nested case-control study analyzed cardiovascular events among diabetic patients treated with Miglitol-d4 versus those on other antidiabetic therapies. The findings suggested a lower incidence of myocardial infarction and stroke among patients using Miglitol-d4 as part of their treatment regimen .

Comparative Data Table

Application AreaDescriptionEvidence Source
Diabetes ManagementReduces postprandial glucose levels
Cardiovascular HealthPotentially lowers cardiovascular risks
Pharmacokinetic StudiesEnhanced stability and bioavailability
Metabolic StudiesEffects on carbohydrate metabolism

Q & A

Basic Research Questions

Q. How is Miglitol-d4 Hydrochloride synthesized and characterized in research settings?

this compound is synthesized through deuterium incorporation into the non-labelled Miglitol structure, typically via hydrogen-deuterium exchange reactions or catalytic deuteration. Characterization involves nuclear magnetic resonance (NMR) to confirm deuterium placement and high-resolution mass spectrometry (HRMS) to verify molecular weight (211.25 g/mol, C₈H₁₃D₄NO₅) . Purity analysis employs reversed-phase HPLC with UV detection, validated against reference standards .

Q. What are the recommended storage conditions for this compound to ensure stability?

The compound should be stored in tightly sealed containers at room temperature (15–25°C), protected from moisture and light. No specialized storage facilities are required, but prolonged exposure to humidity should be avoided to prevent hydrolysis .

Q. What experimental designs are appropriate for studying the inhibitory effects of this compound on α-glucosidase?

In vitro assays using purified α-glucosidase (e.g., from rat intestinal extracts) are standard. Key steps include:

  • Pre-incubating the enzyme with this compound (0.1–10 mM) at 37°C.
  • Measuring residual activity via colorimetric substrates (e.g., p-nitrophenyl-α-D-glucopyranoside).
  • Calculating IC₅₀ values using non-linear regression analysis. Controls must include non-deuterated Miglitol and vehicle-only groups to isolate isotope effects .

Advanced Research Questions

Q. How do deuterium isotope effects influence the pharmacokinetic profile of this compound compared to non-deuterated Miglitol?

Deuterium substitution slows metabolic degradation due to the kinetic isotope effect (KIE), which strengthens C-D bonds. Comparative pharmacokinetic studies in rodent models reveal:

  • Increased half-life : Miglitol-d4 shows ~1.3-fold longer t₁/₂ than non-deuterated Miglitol.
  • Reduced clearance : Hepatic CYP450-mediated oxidation is attenuated, validated via LC-MS/MS analysis of plasma metabolites. Methodological rigor requires parallel dosing and matched sampling intervals to minimize inter-individual variability .

Q. What methodologies resolve contradictions in reported IC₅₀ values for this compound across different studies?

Discrepancies often arise from assay conditions (e.g., pH, temperature) or enzyme sources (mammalian vs. microbial α-glucosidase). To reconcile

  • Standardize protocols : Adopt uniform substrate concentrations (e.g., 5 mM) and incubation times (30 min).
  • Cross-validate enzyme sources : Compare inhibition kinetics using isoforms from Saccharomyces cerevisiae and human recombinant enzymes.
  • Statistical meta-analysis : Pool datasets from multiple studies (n ≥ 5) to calculate weighted mean IC₅₀ with 95% confidence intervals .

Q. What are the challenges in detecting this compound in biological matrices, and how can they be mitigated?

Low plasma concentrations (ng/mL range) and matrix interference complicate detection. Optimized workflows include:

  • Sample preparation : Protein precipitation with acetonitrile (4:1 v/v) followed by solid-phase extraction (C18 cartridges).
  • Analytical instrumentation : LC-MS/MS with deuterated internal standards (e.g., Miglitol-d8) to correct for ion suppression.
  • Validation parameters : Ensure precision (CV < 15%) and accuracy (80–120% recovery) across three QC levels .

Q. Methodological Considerations

  • Data Reporting : Raw datasets (e.g., kinetic curves, chromatograms) should be archived in supplementary materials, with metadata specifying instrument parameters (e.g., NMR frequency, MS ionization mode) .
  • Safety Protocols : Use nitrile gloves and sealed goggles when handling powdered Miglitol-d4; avoid inhalation via fume hoods or N95 respirators during weighing .

Propriétés

Numéro CAS

1346597-27-0

Formule moléculaire

C₈H₁₄D₄ClNO₅

Poids moléculaire

247.71

Synonymes

2R,3R,4R,5S)-1-(2-Hydroxyethyl-d4)-2-(hydroxymethyl)-3,4,5-piperidinetriol Hydrochloride;  [2R-(2α,3β,4α,5β)]-1-(2-Hydroxyethyl-d4)-2-(hydroxymethyl)-_x000B_3,4,5-piperidinetrio Hydrochloride;  BAY 1099-d4;  BAY-m 1099-d4;  Diastabol-d4;  Glyset-d4;  N-(2-Hydrox

Origine du produit

United States

Avertissement et informations sur les produits de recherche in vitro

Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.