molecular formula C6H14N2O4Pt+2 B1684641 Carboplatin CAS No. 41575-94-4

Carboplatin

Numéro de catalogue: B1684641
Numéro CAS: 41575-94-4
Poids moléculaire: 371.25 g/mol
Clé InChI: OLESAACUTLOWQZ-UHFFFAOYSA-L
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Méthodes De Préparation

Voies de synthèse et conditions de réaction : Le carboplatine est synthétisé par réaction du cisplatine avec l'acide cyclobutane-1,1-dicarboxylique en présence d'ammoniac . Les conditions de réaction impliquent généralement le chauffage du mélange pour favoriser la formation du complexe de carboplatine.

Méthodes de production industrielle : Dans les milieux industriels, le carboplatine est produit en dissolvant le cisplatine dans l'eau et en ajoutant de l'acide cyclobutane-1,1-dicarboxylique et de l'ammoniac. Le mélange est ensuite chauffé pour promouvoir la réaction, et le carboplatine résultant est purifié par cristallisation .

Analyse Des Réactions Chimiques

Types de réactions : Le carboplatine subit diverses réactions chimiques, notamment des réactions de substitution. Une réaction notable est son activation par les ions chlorure, qui conduit à l'élimination de la partie malonate et à la formation de cisplatine .

Réactifs et conditions courants :

Principaux produits formés :

4. Applications de la recherche scientifique

Le carboplatine a un large éventail d'applications de recherche scientifique :

5. Mécanisme d'action

Le carboplatine exerce ses effets en formant des complexes de platine réactifs qui provoquent des liaisons croisées intra- et inter-brins des molécules d'ADN à l'intérieur de la cellule . Cette modification de la structure de l'ADN inhibe la synthèse de l'ADN et affecte le cycle cellulaire, conduisant finalement à la mort cellulaire . Les cibles moléculaires du carboplatine comprennent l'ADN, où il forme des liaisons covalentes et perturbe le processus de réplication .

Composés similaires :

Comparaison :

La toxicité réduite et l'efficacité similaire du carboplatine en font une alternative précieuse au cisplatine dans les schémas de chimiothérapie, en particulier pour les patients qui ne peuvent pas tolérer les effets secondaires du cisplatine .

Activité Biologique

Carboplatin, a platinum-based chemotherapeutic agent, is widely used in the treatment of various cancers, particularly ovarian and lung cancers. This article delves into its biological activity, mechanisms of action, efficacy in clinical settings, and associated toxicities, supported by data tables and case studies.

This compound exerts its anticancer effects primarily through the formation of DNA cross-links. Upon entering the cell, this compound undergoes hydrolysis to become positively charged, allowing it to bind covalently to nucleophilic sites on DNA, particularly the N7 position of guanine bases. This binding disrupts DNA replication and transcription, leading to apoptosis in cancer cells .

Key Mechanisms:

  • DNA Cross-linking: Formation of DNA adducts that inhibit replication.
  • Protein Interactions: this compound also interacts with RNA and proteins, contributing to its cytotoxic effects .
  • Resistance Mechanisms: Cancer cells may develop resistance through various mechanisms, including increased drug efflux and enhanced DNA repair capabilities .

Efficacy in Clinical Trials

A significant body of research has evaluated the efficacy of this compound in clinical settings. A randomized clinical trial compared single-agent this compound with combination therapies involving paclitaxel. The results indicated that single-agent this compound had significantly worse survival outcomes compared to combination regimens in older patients with ovarian cancer .

Summary of Clinical Findings:

Treatment RegimenCompletion RateSurvival Outcomes
This compound + Paclitaxel (Q3W)65%Better than single-agent
Single-Agent this compound48%Significantly worse survival
Weekly this compound + Paclitaxel60%Comparable to combination

This trial underscores the importance of combination therapies in enhancing treatment efficacy while minimizing adverse effects.

Case Studies

In preclinical models, this compound has shown significant tumor growth inhibition. For instance, studies have demonstrated its effectiveness in subcutaneous lung cancer models, highlighting its potential as a first-line treatment option .

Notable Case Study:

  • Patient Profile: An 80-year-old female with stage IV ovarian cancer.
  • Treatment Regimen: this compound AUC 5 mg/mL·min + Paclitaxel.
  • Outcome: The patient completed six cycles with manageable side effects but experienced disease progression post-treatment.

Toxicity and Side Effects

While this compound is effective against various tumors, it is associated with several toxicities. The most common adverse effects include:

  • Hematological Toxicity: Neutropenia and thrombocytopenia are frequently observed.
  • Neurotoxicity: this compound can cause peripheral neuropathy due to its effects on sensory neurons .
  • Nausea and Vomiting: These are common side effects that can significantly impact patient quality of life.

Recent Research Findings

Recent studies have explored the enhancement of this compound's activity through various mechanisms. For example, research indicates that this compound enhances the activation of transient receptor potential ankyrin 1 (TRPA1) channels in sensory neurons, which may contribute to its neurotoxic effects but also suggests potential pathways for mitigating pain associated with chemotherapy-induced peripheral neuropathy (CIPN) .

Q & A

Basic Research Questions

Q. How is Carboplatin dosage calculated based on renal function in clinical research, and what methodological considerations ensure accuracy?

this compound dosing relies on the Calvert formula: Dose (mg) = Target AUC × (GFR + 25) . This formula was derived from pharmacokinetic studies linking this compound plasma clearance to glomerular filtration rate (GFR) and validated prospectively across diverse patient cohorts . Key considerations include:

  • GFR measurement : Use standardized methods (e.g., iohexol clearance or Cockcroft-Gault equation).
  • Target AUC selection : Tailor to patient history (e.g., AUC 5 for pretreated patients; AUC 7 for untreated patients).
  • Nonrenal clearance validation : Ensure body surface area does not influence nonrenal clearance, as demonstrated in pharmacokinetic modeling .

Q. What are the standard efficacy metrics for evaluating this compound in solid tumors, and how are they applied in clinical trials?

Efficacy is assessed using RECIST (Response Evaluation Criteria in Solid Tumors) guidelines, which standardize tumor measurement and response classification (e.g., complete/partial response, stable/progressive disease) . Key metrics include:

  • Overall Survival (OS) : Median survival and hazard ratios.
  • Progression-Free Survival (PFS) : Time to disease progression or death.
  • Toxicity grading : Use CTCAE (Common Terminology Criteria for Adverse Events) to quantify hematological/non-hematological adverse effects. Example: In NSCLC trials, this compound-paclitaxel showed a median survival of 7.9 months, comparable to cisplatin-based regimens .

Q. How should researchers design experiments to compare this compound monotherapy with combination regimens?

  • Randomization : Assign patients to monotherapy vs. combination arms to minimize bias .
  • Endpoint selection : Prioritize PFS for early efficacy signals and OS for long-term outcomes.
  • Sample size calculation : Use power analysis to detect clinically meaningful differences (e.g., 80% power, α = 0.05).
  • Toxicity monitoring : Predefine thresholds for dose modification (e.g., grade 3 thrombocytopenia). Example: A phase II trial comparing this compound-paclitaxel with/without cetuximab required 108 patients to detect a hazard ratio of 0.70 .

Advanced Research Questions

Q. How can pharmacokinetic modeling address interpatient variability in this compound response?

Pharmacokinetic models (e.g., two-compartment models) integrate GFR, nonrenal clearance, and AUC to predict drug exposure. Methodological steps include:

  • Plasma sampling : Collect serial post-infusion samples to estimate clearance rates.
  • Nonlinear mixed-effects modeling : Use software like NONMEM to account for covariates (e.g., age, albumin levels).
  • Validation : Compare predicted vs. observed AUC values (e.g., ±15% error margin) . Example: A refined Calvert formula reduced interpatient variability in AUC prediction from 24% to 11% in prospective studies .

Q. What statistical approaches resolve contradictions in this compound efficacy data across studies?

  • Meta-analysis : Pool data from trials with homogeneous designs (e.g., fixed cisplatin-carboplatin ratios) to identify trends.
  • Subgroup analysis : Stratify by biomarkers (e.g., ERCC1 expression) or patient characteristics (e.g., smoking status).
  • Bayesian hierarchical models : Adjust for confounding variables (e.g., prior therapies, supportive care differences). Example: A meta-analysis of 1,207 NSCLC patients found no survival difference between this compound-paclitaxel and cisplatin-gemcitabine, despite divergent toxicity profiles .

Q. How can researchers predict synergistic effects of this compound in multidrug cocktails using limited experimental data?

The "pairs model" predicts synergy by testing drug pairs and extrapolating to higher-order combinations. Steps include:

  • Dose-response matrices : Measure viability curves for individual drugs and pairs.
  • Bliss independence or Loewe additivity : Quantify synergy/antagonism.
  • Validation in vivo : Use xenograft models to confirm efficacy. Example: A study combining this compound with etoposide and camptothecin achieved 80% tumor reduction in vitro using this approach .

Q. What strategies ensure reproducibility in preclinical studies evaluating this compound resistance mechanisms?

  • NIH guidelines compliance : Document cell line authentication, passage numbers, and assay conditions (e.g., hypoxia vs. normoxia) .
  • Open data practices : Share raw data (e.g., RNA-seq files) via repositories like GEO or Figshare.
  • Replication cohorts : Validate findings in independent cell lines or patient-derived organoids. Example: A study on this compound resistance in ovarian cancer required three independent replicates for all qPCR and Western blot results .

Q. Methodological Tables

Table 1. Key Parameters in the Calvert Formula

ParameterDefinitionValue Range
Target AUCArea under the plasma concentration curve4–8 mg/mL·min
GFRGlomerular filtration rate33–135 mL/min
Nonrenal clearanceIndependent of body surface area20–30 mL/min

Table 2. Efficacy of this compound in Phase III NSCLC Trials

RegimenMedian OS (months)1-Year Survival (%)Grade 3+ Toxicity (%)
This compound-Paclitaxel7.93323 (neutropenia)
Cisplatin-Gemcitabine8.13429 (nephrotoxicity)
Data from Schiller et al. (2002) .

Propriétés

IUPAC Name

azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C6H8O4.2H2N.Pt/c7-4(8)6(5(9)10)2-1-3-6;;;/h1-3H2,(H,7,8)(H,9,10);2*1H2;/q;2*-1;+2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

VSRXQHXAPYXROS-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CC(C1)(C(=O)O)C(=O)O.[NH2-].[NH2-].[Pt+2]
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C6H12N2O4Pt
Record name Carboplatin
Source Wikipedia
URL https://en.wikipedia.org/wiki/Carboplatin
Description Chemical information link to Wikipedia.
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Weight

371.25 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Solubility

Sol in water, Water > 15 (mg/mL), pH 4 Acetate Buffer 5 - 10 (mg/mL), pH 9 Carbonate Buffer 5 - 10 (mg/mL), 10% Ethanol/H2O 5 - 10 (mg/mL), 95% Ethanol/H < 1 (mg/mL), 0.1NHC1 5 -10 (mg/mL), 0.1NNaOH 5 -10 (mg/mL), Methanol < 1 (mg/mL), Chloroform < 5 (mg/mL), Dimethylsulfoxide 5 (mg/mL), Acetic Acid < 1 (mg/mL), Trifluoroacetic Acid < 1 (mg/mL)
Record name CARBOPLATIN
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6957
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.
Record name CARBOPLATIN
Source NCI Investigational Drugs
URL http://dtp.nci.nih.gov/NCI-InvestigationalDrugsCI92/241240%20(1992).txt
Description An investigational drug is one that is under study but does not have permission from the U.S. Food and Drug Administration (FDA) to be legally marketed and sold in the United States. NCI provides the investigational drug to the physicians who are participating in clinical trials or TRC protocols. For more information please visit NCI investigational drug website: https://www.cancer.gov/about-cancer/treatment/drugs/investigational-drug-access-fact-sheet

Color/Form

White crystals

CAS No.

41575-94-4
Record name carboplatin
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=758182
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name carboplatin
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=241240
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name carboplatin
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=201345
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Diammine[cyclobutane-1,1-dicarboxylato(2-)-O,O']platinum
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.050.388
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name CARBOPLATIN
Source Hazardous Substances Data Bank (HSDB)
URL https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6957
Description The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel.

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Carboplatin
Reactant of Route 2
Carboplatin
Reactant of Route 3
Carboplatin
Reactant of Route 4
Carboplatin
Reactant of Route 5
Reactant of Route 5
Reactant of Route 5
Carboplatin
Reactant of Route 6
Carboplatin

Avertissement et informations sur les produits de recherche in vitro

Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.