molecular formula C22H24ClFN4O3 B1684475 ゲフィチニブ CAS No. 184475-35-2

ゲフィチニブ

カタログ番号: B1684475
CAS番号: 184475-35-2
分子量: 446.9 g/mol
InChIキー: XGALLCVXEZPNRQ-UHFFFAOYSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

説明

ゲフィチニブは、イレッサという商品名で販売されている薬剤であり、主に非小細胞肺がんや乳がんを含む特定の種類のがんの治療に使用されます。 これは、細胞の成長と生存の調節に重要な役割を果たす上皮成長因子受容体(EGFR)チロシンキナーゼの選択的阻害剤です .

2. 製法

合成経路および反応条件: ゲフィチニブは、4,5-ジメトキシ-2-ニトロ安息香酸から始まる多段階プロセスによって合成されます。 合成には、脱メチル化、エステル化、側鎖アルキル化、還元、シクロヘキシルアミン形成、塩素化、およびアンモニア置換など、いくつかの重要なステップが含まれます .

工業生産方法: 工業環境では、ゲフィチニブは、高収率と高純度を確保するために最適化された合成経路を使用して製造されています。 このプロセスには、目的の製品品質を実現するために、温度、pH、溶媒選択などの反応条件を厳密に制御することが含まれます .

科学的研究の応用

Non-Small Cell Lung Cancer (NSCLC)

  • First-Line Treatment : Gefitinib is approved for use as a first-line treatment in patients with advanced NSCLC harboring sensitive EGFR mutations. Clinical trials have shown that gefitinib significantly improves progression-free survival compared to standard chemotherapy in this patient population .
  • Second-Line Treatment : In cases where patients have previously received chemotherapy, gefitinib remains an effective option. Studies indicate that it offers better tolerability and quality of life compared to traditional chemotherapy regimens .
  • Brain Metastases : One of the notable advantages of gefitinib is its ability to penetrate the blood-brain barrier effectively. This property makes it a viable option for treating patients with brain metastases from NSCLC, where other therapies may fail to achieve therapeutic concentrations .

Other Cancers

While gefitinib's primary application is in NSCLC, research is ongoing into its efficacy against other malignancies:

  • Head and Neck Cancers : Some studies suggest potential benefits in head and neck squamous cell carcinoma, particularly in tumors expressing high levels of EGFR .
  • Combination Therapies : Recent investigations have explored the synergistic effects of gefitinib when combined with other agents like anlotinib, showing enhanced efficacy against resistant NSCLC cell lines .

Case Study 1: Efficacy in Asian Populations

A significant body of research indicates that gefitinib is particularly effective among Asian populations with adenocarcinoma histology and those who have never smoked. The IRESSA Pan-Asia Study (IPASS) revealed an overall response rate exceeding 80% in patients with EGFR mutation-positive tumors . This study emphasizes the importance of genetic profiling in optimizing treatment strategies.

Case Study 2: Long-Term Outcomes

A longitudinal study involving patients treated with gefitinib over several years demonstrated sustained efficacy and manageable side effects. Patients reported improved quality of life metrics compared to those receiving standard chemotherapy regimens .

Adverse Effects

While gefitinib is generally well-tolerated, it can cause side effects such as skin rash, diarrhea, and liver enzyme elevation. Monitoring and management strategies are essential to mitigate these effects during treatment .

作用機序

ゲフィチニブは、EGFRチロシンキナーゼを阻害することにより効果を発揮します。それは酵素のアデノシン三リン酸(ATP)結合部位に結合し、下流シグナル伝達経路のリン酸化と活性化を阻止します。 この阻害は、EGFRが過剰発現または変異しているがん細胞における細胞増殖の抑制とアポトーシスの誘導につながります .

6. 類似の化合物との比較

ゲフィチニブは、エルロチニブやアファチニブなどの他のEGFR阻害剤と比較されることがよくあります。3つの化合物すべてがEGFRチロシンキナーゼを標的にしていますが、薬物動態特性と臨床的有効性に違いがあります。

独自性: ゲフィチニブは、EGFRチロシンキナーゼを選択的に阻害し、がん細胞の特定の変異を標的にできるという点でユニークであり、個別化がん療法において貴重なツールとなっています .

類似の化合物:

生化学分析

Biochemical Properties

Gefitinib plays a significant role in biochemical reactions. It interacts with various enzymes, proteins, and other biomolecules. Gefitinib is an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase that binds to the adenosine triphosphate (ATP)-binding site of the enzyme . EGFR is often overexpressed in certain human carcinoma cells, such as lung and breast cancer cells .

Cellular Effects

Gefitinib has profound effects on various types of cells and cellular processes. It influences cell function, including impacts on cell signaling pathways, gene expression, and cellular metabolism. In vitro cytotoxicity studies revealed that Gefitinib enhanced the inhibition of cell proliferation and apoptosis in A549 and H1299 cells compared to free Gefitinib .

Molecular Mechanism

Gefitinib exerts its effects at the molecular level through several mechanisms. It binds to the ATP-binding site of the EGFR tyrosine kinase enzyme, inhibiting its activity . This interaction leads to changes in gene expression and cellular functions .

準備方法

Synthetic Routes and Reaction Conditions: Gefitinib is synthesized through a multi-step process starting from 4,5-dimethoxy-2-nitrobenzoic acid. The synthesis involves several key steps, including demethylation, esterification, side-chain alkylation, reduction, cyclohexylamine formation, chlorination, and ammonia substitution .

Industrial Production Methods: In industrial settings, gefitinib is produced using optimized synthetic routes to ensure high yield and purity. The process involves strict control of reaction conditions, such as temperature, pH, and solvent selection, to achieve the desired product quality .

化学反応の分析

反応の種類: ゲフィチニブは、以下を含むさまざまな化学反応を受けます。

一般的な試薬と条件:

主要な生成物: これらの反応から形成される主要な生成物には、薬理学的性質が変化したさまざまなゲフィチニブ誘導体が含まれます .

4. 科学研究の応用

ゲフィチニブは、幅広い科学研究の応用を持っています。

    化学: EGFR阻害剤とその標的タンパク質との相互作用を研究するためのモデル化合物として使用されています。

    生物学: 細胞シグナル伝達経路とアポトーシスへの影響について調査されています。

    医学: 非小細胞肺がんやその他のEGFR変異がんの治療のための臨床試験で広く使用されています。

    産業: 標的がん療法や個別化医療アプローチの開発に採用されています

類似化合物との比較

生物活性

Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is primarily used in the treatment of non-small cell lung cancer (NSCLC) with specific EGFR mutations. This article explores the biological activity of gefitinib, focusing on its mechanisms of action, efficacy in clinical trials, and emerging research findings.

Gefitinib selectively binds to the ATP-binding site of the EGFR tyrosine kinase domain, inhibiting its phosphorylation and subsequent activation of downstream signaling pathways. This results in decreased cell proliferation and increased apoptosis in cancer cells expressing mutant forms of EGFR. The compound has shown significant effects on various cellular processes, including:

  • Inhibition of Cell Proliferation : Gefitinib suppresses the growth of cancer cells by blocking EGFR-mediated signaling pathways.
  • Induction of Apoptosis : It promotes programmed cell death through alterations in mitochondrial function and expression levels of Bcl-2 family proteins, such as Bcl-xL and Bax .
  • Impact on Mitochondrial Activity : Recent studies indicate that gefitinib enhances mitochondrial functions, such as succinate-tetrazolium reductase (STR) activity, particularly in high-density cell cultures .

Efficacy in Clinical Trials

Gefitinib has been evaluated extensively in clinical trials for its efficacy and safety profile. Key findings from several studies are summarized below:

Study Type Population Dosage Objective Response Rate Progression-Free Survival (PFS) Overall Survival (OS)
Phase II TrialAdvanced NSCLC250 mg/day18.4% - 19.0% 2.7 - 2.8 months 7.6 - 8.0 months
Phase III TrialRefractory NSCLCVariable28.1% vs. 7.6% (vs Docetaxel) Longer for gefitinib (HR: 0.729) Numerical improvement
Multi-institutional TrialPreviously Treated NSCLC250 mg/day vs 500 mg/daySymptom improvement rates: 40.3% (250 mg) vs 37% (500 mg) Similar for both doses Favorable AE profile at lower dose

Case Studies

  • Mitochondrial Activity Enhancement : In a study involving HCC827 cells (EGFR mutation positive), gefitinib was shown to enhance mitochondrial membrane potential and STR activity, indicating its role as a mitochondrial protector during combination therapy with doxorubicin .
  • Resistance Development : Despite its initial effectiveness, resistance to gefitinib often develops within one to two years due to various mechanisms including secondary mutations in the EGFR gene or activation of alternative signaling pathways . A case study highlighted a patient who initially responded well but later exhibited resistance due to a T790M mutation.
  • Urothelial Carcinoma : In vitro studies demonstrated gefitinib's inhibitory effects on growth and invasion in urothelial carcinoma cell lines, suggesting potential applications beyond NSCLC .

特性

IUPAC Name

N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)quinazolin-4-amine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C22H24ClFN4O3/c1-29-20-13-19-16(12-21(20)31-8-2-5-28-6-9-30-10-7-28)22(26-14-25-19)27-15-3-4-18(24)17(23)11-15/h3-4,11-14H,2,5-10H2,1H3,(H,25,26,27)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

XGALLCVXEZPNRQ-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

COC1=C(C=C2C(=C1)N=CN=C2NC3=CC(=C(C=C3)F)Cl)OCCCN4CCOCC4
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C22H24ClFN4O3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID8041034
Record name Gefitinib
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8041034
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

446.9 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Gefitinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014462
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

Sparingly soluble (
Record name Gefitinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00317
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Gefitinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014462
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Gefitinib is an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase that binds to the adenosine triphosphate (ATP)-binding site of the enzyme. EGFR is often shown to be overexpressed in certain human carcinoma cells, such as lung and breast cancer cells. Overexpression leads to enhanced activation of the anti-apoptotic Ras signal transduction cascades, subsequently resulting in increased survival of cancer cells and uncontrolled cell proliferation. Gefitinib is the first selective inhibitor of the EGFR tyrosine kinase which is also referred to as Her1 or ErbB-1. By inhibiting EGFR tyrosine kinase, the downstream signaling cascades are also inhibited, resulting in inhibited malignant cell proliferation.
Record name Gefitinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00317
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

184475-35-2
Record name Gefitinib
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=184475-35-2
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Gefitinib [USAN:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0184475352
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Gefitinib
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00317
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Gefitinib
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759856
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Gefitinib
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID8041034
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Gefitinib
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/information-on-chemicals
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name GEFITINIB
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/S65743JHBS
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Gefitinib
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014462
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods I

Procedure details

Methanol (1200 ml) and 6-(3-morpholino propoxy)-7-methoxy-4-chloro quinazoline (200 gm) were stirred for 15 minutes at 25-30° C., then a solution of 4-fluoro-3-chloroaniline in methanol (213 gm in 400 ml) was charged and refluxed for 6 hours. The reaction mass was cooled to 15-20° C., hydrochloric acid (40 ml) was added drop wise, and stirred at 5-10° C. for 30 minutes. The solid obtained was filtered and washed with chilled methanol (150 ml). The solid was dissolved in a mixture of toluene (30 volume) and methanol (5 volume), the reaction mass was concentrated to half the volume and cooled to 5-10° C. The solid obtained was filtered, washed with toluene (200 ml) and dried at 45-50° C. to yield the title compound (183 gm, 70% yield).
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
400 mL
Type
solvent
Reaction Step One
Quantity
40 mL
Type
reactant
Reaction Step Two
Quantity
200 g
Type
reactant
Reaction Step Three
Quantity
1200 mL
Type
solvent
Reaction Step Three
Yield
70%

Synthesis routes and methods II

Procedure details

condensing, 4-chloro-7-methoxy-6-(3-morpholino propoxy) quinazoline of the formula VII with 3-chloro-4-fluoroaniline to obtain gefitinib of formula I.
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
[Compound]
Name
formula VII
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Gefitinib
Reactant of Route 2
Reactant of Route 2
Gefitinib
Reactant of Route 3
Reactant of Route 3
Gefitinib
Reactant of Route 4
Reactant of Route 4
Gefitinib
Reactant of Route 5
Reactant of Route 5
Gefitinib
Reactant of Route 6
Reactant of Route 6
Gefitinib

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。