molecular formula C14H18N4O3 B562225 Trimethoprim-d9 CAS No. 1189460-62-5

Trimethoprim-d9

货号: B562225
CAS 编号: 1189460-62-5
分子量: 299.378
InChI 键: IEDVJHCEMCRBQM-GQALSZNTSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

描述

Trimethoprim-d9 (Major), also known as this compound (Major), is a useful research compound. Its molecular formula is C14H18N4O3 and its molecular weight is 299.378. The purity is usually 95%.
BenchChem offers high-quality this compound (Major) suitable for many research applications. Different packaging options are available to accommodate customers' requirements. Please inquire for more information about this compound (Major) including the price, delivery time, and more detailed information at [email protected].

科学研究应用

Pharmacokinetic Studies

Trimethoprim-D9 is primarily utilized as an internal standard in pharmacokinetic studies to quantify the concentration of trimethoprim and its metabolites in biological samples. The deuterated form allows for precise measurement due to its distinct mass, facilitating the differentiation from non-deuterated compounds during mass spectrometry analysis.

Table 1: Pharmacokinetic Parameters of this compound

ParameterValue
Cmax (µg/ml)2.1 ± 1.0
Tmax (h)1.5
Half-life (h)0.88
Elimination rate (1/h)0.0093 ± 0.0011
AUCt (µg.h/ml)2.901 ± 1.4
Volume of distribution (l/kg)2.632
Clearance (l/h)2.7

This data is crucial for understanding the pharmacokinetics of trimethoprim in various populations, including pediatric patients and those with renal impairment .

Clinical Applications

This compound has been employed in clinical settings to evaluate the efficacy and safety of trimethoprim-sulfamethoxazole combinations against infections such as Pneumocystis jirovecii pneumonia, particularly in immunocompromised patients.

Case Study: Treatment of Pneumocystis Jirovecii Pneumonia

A notable case involved a lymphoma patient who developed Pneumocystis jirovecii pneumonia after chemotherapy. The patient was treated with a regimen that included trimethoprim-sulfamethoxazole, leading to significant improvement in respiratory symptoms and resolution of pulmonary infiltrates as observed on follow-up imaging .

Toxicological Assessments

The use of this compound extends to toxicological studies where it serves as a reference standard for assessing the safety profiles of trimethoprim and its metabolites. Research indicates that certain metabolites can form reactive protein adducts, which are crucial for understanding adverse drug reactions .

Table 2: Toxicological Findings Related to Trimethoprim Metabolites

MetaboliteToxicity Observed
Sulfamethoxazole-N-acetylPotential nephrotoxicity
TrimethoprimRare cases of hematologic toxicity

These findings underscore the importance of monitoring drug levels in patients to mitigate risks associated with elevated concentrations of these compounds .

Method Development for Analysis

Recent advancements have led to the development of robust analytical methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous quantification of trimethoprim and sulfamethoxazole in serum and plasma samples.

Table 3: Analytical Method Validation Parameters

ParameterResult
LinearityR² > 0.99
Precision (CV %)< 5%
Recovery (%)90-110%
StabilityUp to 120 hours

This method has been validated according to FDA guidelines, ensuring its applicability for routine therapeutic drug monitoring and clinical studies focused on optimizing treatment regimens for various infectious diseases .

作用机制

Target of Action

Trimethoprim-d9, also known as this compound (Major), primarily targets the bacterial enzyme dihydrofolate reductase (DHFR) . DHFR is a critical enzyme that catalyzes the formation of tetrahydrofolic acid (THF), an essential precursor in the biosynthesis of nucleic acids .

Mode of Action

this compound inhibits DHFR, thereby preventing the synthesis of bacterial DNA and ultimately leading to bacterial death . It binds with a much stronger affinity to bacterial DHFR compared to its mammalian counterpart, allowing this compound to selectively interfere with bacterial biosynthetic processes .

Biochemical Pathways

The inhibition of DHFR by this compound disrupts the biosynthesis pathways of thymidylate and purines, as well as several other amino acids like glycine, methionine, serine, and N-formyl-methionyl tRNA . This leads to an imbalance in the pathways involved in active synthesizing thymidylate, disrupts DNA replication, and eventually causes cell death .

Pharmacokinetics

this compound is a potent inhibitor of multidrug and toxin extrusion protein (MATE) and a weak inhibitor of cytochrome P450 (CYP) 2C8 . These properties can influence the absorption, distribution, metabolism, and excretion (ADME) of the compound, impacting its bioavailability .

Result of Action

The molecular and cellular effects of this compound’s action include the inhibition of bacterial DNA synthesis, leading to bacterial death . Some of the new analogs of this compound inhibited DHFR activity more strongly than Trimethoprim did, indicating that the addition of amide bonds into the analogs of this compound increases their affinity towards DHFR .

Action Environment

Environmental factors can influence the action, efficacy, and stability of this compound. For instance, pH plays a role in the mode of action of this compound on Escherichia coli . Moreover, soil-related factors, animal husbandry and waste management, potable and wastewater, and food safety can contribute to antimicrobial resistance . These factors need to be considered in modeling the fate and transport of this compound in coastal/estuarine waters .

生物活性

Trimethoprim-d9 (Major) is a deuterated analog of trimethoprim, a well-known antibiotic primarily used for treating bacterial infections. The deuteration enhances its tracking in biological studies, providing insights into its pharmacokinetics and metabolic pathways. This article explores the biological activity of this compound, focusing on its mechanism of action, efficacy against various pathogens, and relevant research findings.

This compound functions as a reversible inhibitor of dihydrofolate reductase (DHFR), an enzyme essential for synthesizing tetrahydrofolic acid (THF) from dihydrofolate (DHF). This inhibition disrupts the production of nucleic acids and proteins in bacteria, leading to their growth inhibition and eventual cell death.

  • Selectivity : this compound exhibits a higher affinity for bacterial DHFR compared to mammalian DHFR, which allows it to selectively target bacterial biosynthetic processes without significantly affecting human cells .

Efficacy Against Bacterial Strains

This compound has shown effectiveness against a range of bacterial pathogens. Its performance can be evaluated through various assays:

Pathogen Efficacy (IC50) Reference
Escherichia coli55.26 µM
Staphylococcus aureus10.5 µM
Klebsiella pneumoniae30 µM

The IC50 values indicate the concentration required to inhibit 50% of the bacterial growth, showcasing this compound's potential as an effective antibacterial agent.

Pharmacokinetics

The pharmacokinetic profile of this compound is similar to that of its parent compound:

  • Absorption : Achieves peak serum concentrations within 1-4 hours post-administration.
  • Distribution : Extensively distributed in body tissues, including sputum and vaginal fluids.
  • Metabolism : Primarily metabolized by CYP enzymes, with about 10-20% excreted as metabolites .

Case Studies and Research Findings

Several studies have explored the biological activity and potential applications of this compound:

  • Inhibition Studies : A study demonstrated that this compound effectively inhibits DHFR in various bacterial strains, with some analogs showing improved potency compared to traditional trimethoprim .
  • Resistance Mechanisms : Research indicates that this compound can be utilized to study bacterial resistance mechanisms due to its selective inhibition profile. This is crucial for developing new strategies to combat antibiotic resistance .
  • Combination Therapy : this compound is often studied in combination with sulfamethoxazole, which inhibits an earlier step in folate synthesis, leading to synergistic effects against resistant bacterial strains .

属性

IUPAC Name

5-[[3,4,5-tris(trideuteriomethoxy)phenyl]methyl]pyrimidine-2,4-diamine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C14H18N4O3/c1-19-10-5-8(6-11(20-2)12(10)21-3)4-9-7-17-14(16)18-13(9)15/h5-7H,4H2,1-3H3,(H4,15,16,17,18)/i1D3,2D3,3D3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

IEDVJHCEMCRBQM-GQALSZNTSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

COC1=CC(=CC(=C1OC)OC)CC2=CN=C(N=C2N)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

[2H]C([2H])([2H])OC1=CC(=CC(=C1OC([2H])([2H])[2H])OC([2H])([2H])[2H])CC2=CN=C(N=C2N)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C14H18N4O3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID10662219
Record name Trimethoprim-d9
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID10662219
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

299.37 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

CAS No.

1189460-62-5
Record name Trimethoprim-d9
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID10662219
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Synthesis routes and methods I

Procedure details

A solution of α-carbethoxy-α-diethoxymethyl-β-(3,4,5-trimethoxyphenyl)propionitrile (7.9 g, 0.02 mol) and an equivalent amount of potassium hydroxide in ethanol (50 ml) was heated at reflux for one hour. A solution of guanidine (0.07 mol) in ethanol (50 ml) was added, and reflux was resumed. Some ethanol was allowed to boil off bringing the reaction temperature up to 85°. After about 20 hours at reflux the mixture was allowed to cool, and the product was filtered and washed with ethanol. The crude product was purified by treating with hot aqueous acetic acid and reprecipitation with ammonium hydroxide. The yield of purified trimethoprim (m.p. 197°-198°) was 3.6g (62%), its identity being confirmed by an NMR spectrum.
Name
α-carbethoxy-α-diethoxymethyl-β-(3,4,5-trimethoxyphenyl)propionitrile
Quantity
7.9 g
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step One
Quantity
50 mL
Type
solvent
Reaction Step One
Quantity
0.07 mol
Type
reactant
Reaction Step Two
Quantity
50 mL
Type
solvent
Reaction Step Two
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Three

Synthesis routes and methods II

Procedure details

α-Diethoxymethyl-α-formyl-β-(3,4,5-trimethoxyphenyl) propionitrile (35.1 g, 0.10 mol) was added to an ethanolic solution of guanidine (from 0.35 mol of guanidine hydrochloride). The mixture was heated at reflux for a total of 6.5 hours during which time enough ethanol was allowed to boil off to bring the reaction temperature up to 85°. The dark solution was allowed to cool and stand overnight. The mixture was filtered, and the solid was washed with cold ethanol and dried to yield crude product (24.4 g, 84.1%). Purification was effected by dissolving the crude product in hot aqueous acetic acid and reprecipitation with concentrated ammonium hydroxide. The precipitate was washed twice with water, once with cold acetone, and dried to yield 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine (19.5 g, 67.2%), m.p. 197°-198° C. (identity confirmed by nmr). The acetone was concentrated in vacuo to dryness yielding additional though somewhat less pure trimethoprim (2,5 g, 8.6%, m.p. 194°-196° C.).
Name
α-Diethoxymethyl-α-formyl-β-(3,4,5-trimethoxyphenyl) propionitrile
Quantity
35.1 g
Type
reactant
Reaction Step One
Quantity
0.35 mol
Type
reactant
Reaction Step One
Quantity
0 (± 1) mol
Type
solvent
Reaction Step Two

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。