molecular formula C10H13ClN2O3S B586757 Chlorpropamide-d4 CAS No. 1794779-79-5

Chlorpropamide-d4

货号: B586757
CAS 编号: 1794779-79-5
分子量: 280.759
InChI 键: RKWGIWYCVPQPMF-LNFUJOGGSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

描述

Chlorpropamide-d4 is a deuterated form of chlorpropamide, an antidiabetic drug belonging to the sulfonylurea class of organic compounds. It is used primarily for the treatment of type 2 diabetes mellitus. The deuterated form, this compound, is often used in scientific research as an internal standard in mass spectrometry due to its stable isotopic labeling .

准备方法

Synthetic Routes and Reaction Conditions

The synthesis of Chlorpropamide-d4 involves the incorporation of deuterium atoms into the chlorpropamide molecule. This can be achieved through various methods, including catalytic hydrogen-deuterium exchange reactions. The reaction typically involves the use of deuterium gas (D2) in the presence of a catalyst such as palladium on carbon (Pd/C) under controlled conditions .

Industrial Production Methods

Industrial production of this compound follows similar synthetic routes but on a larger scale. The process involves stringent quality control measures to ensure the purity and isotopic labeling of the final product. The use of high-performance liquid chromatography (HPLC) and mass spectrometry is common in the quality assessment of this compound .

化学反应分析

Types of Reactions

Chlorpropamide-d4, like its non-deuterated counterpart, undergoes various chemical reactions, including:

Common Reagents and Conditions

Major Products Formed

科学研究应用

Chlorpropamide-d4 is extensively used in scientific research, particularly in the fields of:

作用机制

Chlorpropamide-d4, like chlorpropamide, acts by stimulating the release of insulin from pancreatic beta cells. It binds to ATP-sensitive potassium channels on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. This depolarization opens voltage-gated calcium channels, leading to an influx of calcium ions and subsequent insulin release .

相似化合物的比较

Similar Compounds

Uniqueness

Chlorpropamide-d4 is unique due to its deuterated nature, which makes it particularly useful as an internal standard in analytical chemistry. Its long half-life and potent insulin-releasing effect make it distinct among first-generation sulfonylureas .

生物活性

Chlorpropamide-d4 is a deuterated form of chlorpropamide, a sulfonylurea class medication primarily used for managing type 2 diabetes mellitus. Understanding its biological activity is crucial for optimizing therapeutic use and minimizing adverse effects. This article delves into the mechanisms of action, pharmacokinetics, potential side effects, and relevant case studies associated with this compound.

This compound, like its non-deuterated counterpart, functions as an insulin secretagogue. The primary mechanism involves the inhibition of ATP-sensitive potassium channels on pancreatic beta cells. This inhibition results in membrane depolarization, leading to increased intracellular calcium levels through voltage-gated calcium channels. The elevated calcium concentration stimulates insulin secretion from the pancreas, thereby lowering blood glucose levels .

Pharmacokinetics

This compound exhibits similar pharmacokinetic properties to chlorpropamide:

  • Absorption : Rapidly absorbed from the gastrointestinal tract, with peak plasma concentrations occurring within 2-4 hours post-administration.
  • Half-life : Approximately 36 hours, with variability between individuals ranging from 25 to 60 hours.
  • Metabolism : About 80% of the dose is metabolized in the liver to various metabolites, including 2-hydroxylchlorpropamide and p-chlorobenzenesulfonylurea.
  • Excretion : 80-90% of the administered dose is excreted in urine as unchanged drug and metabolites within 96 hours .

Biological Activity and Side Effects

While this compound shares many characteristics with chlorpropamide, its deuteration may influence its metabolic stability and biological effects. The following table summarizes key findings related to its biological activity and potential side effects:

Parameter Chlorpropamide This compound
Primary Use Management of type 2 diabetesInvestigational use; potential therapeutic benefits
Mechanism of Action Insulin secretion stimulationSimilar mechanism; potential for altered pharmacodynamics
Common Side Effects Hypoglycemia, weight gain, hyponatremiaExpected similar side effects; ongoing research needed
Metabolism Liver metabolism; multiple metabolitesPotentially altered metabolism due to deuteration
Elimination Route Urinary excretionExpected similar elimination pathway

Case Studies

  • Hyponatremia Incidence : A study involving 176 patients treated with chlorpropamide reported a 6.3% incidence of hyponatremia. Factors such as age and concurrent use of thiazide diuretics significantly increased risk . While specific data on this compound is limited, it is essential to monitor sodium levels in patients receiving treatment.
  • Hepatotoxicity Reports : Chlorpropamide has been linked to hepatotoxic reactions presenting as cholestatic liver injury. A case study highlighted an unusual presentation of hepatotoxicity in a patient treated with chlorpropamide, suggesting that monitoring liver function is critical during therapy . The implications for this compound regarding hepatotoxicity remain to be thoroughly investigated.
  • Cardiovascular Risks : Research indicates that sulfonylureas may carry an increased risk of cardiovascular mortality compared to dietary management alone. This finding raises concerns about the long-term safety profile of chlorpropamide and potentially this compound .

属性

IUPAC Name

1-(4-chloro-2,3,5,6-tetradeuteriophenyl)sulfonyl-3-propylurea
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C10H13ClN2O3S/c1-2-7-12-10(14)13-17(15,16)9-5-3-8(11)4-6-9/h3-6H,2,7H2,1H3,(H2,12,13,14)/i3D,4D,5D,6D
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

RKWGIWYCVPQPMF-LNFUJOGGSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)Cl
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

[2H]C1=C(C(=C(C(=C1S(=O)(=O)NC(=O)NCCC)[2H])[2H])Cl)[2H]
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C10H13ClN2O3S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Weight

280.77 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Synthesis routes and methods

Procedure details

n-Propylamine (5.9 g., 0.1 mole.) and propylene carbonate (10.2 g., 0.1 mole.) were mixed and heated at 60° over night. To the resulting hydroxypropyl-n-propylcarbomate were added p-chlorobenzene sulfonamide (10.67 g., as sodium salt) and DMF (200 ml.) and the mixture was heated at 120° for 4 hours. After evaporation of the solvent the residue was taken up in water (200 ml.) and the solution adjusted to pH 8 by the addition of acetic acid. Unreacted p-chlorobenzene sulfonamide (2 g.) separated out and was collected. Further adjustment to pH 5 precipitated 1-(4-chloro-benzenesulfonyl)-3-n-propyl-urea (2 g.) whose infrared spectrum was identical with that of an authentic sample.
Quantity
5.9 g
Type
reactant
Reaction Step One
Quantity
10.2 g
Type
reactant
Reaction Step One
[Compound]
Name
hydroxypropyl-n-propylcarbomate
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Quantity
10.67 g
Type
reactant
Reaction Step Two
Name
Quantity
200 mL
Type
solvent
Reaction Step Two

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。