molecular formula C14H9Cl3N2OS B1681386 三氯苯咪唑 CAS No. 68786-66-3

三氯苯咪唑

货号: B1681386
CAS 编号: 68786-66-3
分子量: 359.7 g/mol
InChI 键: NQPDXQQQCQDHHW-UHFFFAOYSA-N
注意: 仅供研究使用。不适用于人类或兽医用途。
现货
  • 点击 快速询问 获取最新报价。
  • 提供有竞争力价格的高质量产品,您可以更专注于研究。

科学研究应用

Treatment of Fascioliasis

Clinical Efficacy

Triclabendazole is the drug of choice for treating fascioliasis. Studies have demonstrated high cure rates following treatment:

  • Cure Rates by Dosage :
    Dosage RegimenCure Rate (%)Study Reference
    10 mg/kg (single dose)70% - 100%
    20 mg/kg (two doses)96%
    10 mg/kg (multiple doses)63% - 88%

In a retrospective cohort study involving children in Peru, the initial treatment with triclabendazole resulted in a 55% cure rate , which decreased with subsequent treatments, indicating potential resistance or treatment failure in endemic areas .

Case Studies

  • Case Study Example : In a report involving multiple cases of chronic fascioliasis, patients underwent several rounds of treatment with varying dosages of triclabendazole. Despite initial improvements, many continued to shed Fasciola eggs post-treatment, highlighting challenges in achieving complete parasitological cure .

Potential Applications in Schistosomiasis

Recent studies have evaluated triclabendazole's efficacy against Schistosoma mansoni , particularly in patients with co-infections of fascioliasis and schistosomiasis. A field survey showed that:

  • Cure Rate for Schistosomiasis :
    • After two doses of triclabendazole, the cure rate was 32.7% for schistosomiasis compared to 96% for fascioliasis .
  • In Vitro Studies : Triclabendazole demonstrated significant effects on adult schistosomes, leading to rapid destruction of their tegument within hours .

Cancer Research

Emerging research suggests that triclabendazole may have applications in oncology:

  • Mechanism of Action : It has been shown to induce pyroptosis—a form of programmed cell death—in breast cancer cells by activating caspase-3 pathways. This mechanism involves the elevation of reactive oxygen species and the regulation of apoptotic proteins .
  • Tumor Volume Reduction : In xenograft models, triclabendazole significantly reduced tumor volumes, indicating its potential as an anti-cancer agent .

Resistance and Treatment Challenges

Despite its efficacy, there are growing concerns regarding resistance to triclabendazole:

  • A study reported that higher baseline egg counts and lower socioeconomic status were associated with treatment failure in children with chronic fascioliasis . This underscores the need for ongoing surveillance and research into alternative treatments or combination therapies to combat resistance.

生化分析

Biochemical Properties

Triclabendazole and its metabolites are active against both the immature and mature worms of Fasciola hepatica and Fasciola gigantica helminths . It is mainly metabolized by the CYP1A2 enzyme into its active sulfoxide metabolite and to a lesser extent by CYP2C9, CYP2C19, CYP2D6, CYP3A, and FMO (flavin containing monooxygenase) .

Cellular Effects

Triclabendazole has been found to induce lytic cell death in MCF-7 and MDA-MB-231 breast cancer cells, a typical sign of pyroptosis . It activates apoptosis by regulating the apoptotic protein levels including Bax, Bcl-2, and enhanced cleavage of caspase-8/9/3/7 and PARP . In addition, enhanced cleavage of GSDME was also observed, which indicates the secondary necrosis/pyroptosis is further induced by active caspase-3 .

Molecular Mechanism

The molecular mode of action of triclabendazole consists in binding to beta-tubulin, therefore preventing the polymerization of microtubules . This disrupts the structural integrity of the helminths, leading to their death .

Temporal Effects in Laboratory Settings

In a study on 350 individuals with metabolic syndrome high-risk, after a 3-month proactive intervention, two-thirds of the phenotypic markers were significantly improved in the cohort . This suggests that triclabendazole has a time-dependent effect on biochemical markers.

Dosage Effects in Animal Models

In veterinary medicine, triclabendazole is typically administered at an oral dose of 10 or 12 mg/kg body weight to sheep and cattle, respectively . The effects of triclabendazole vary with different dosages in animal models. For example, in a study on sheep naturally infected with Fasciola sp., treatment with triclabendazole resulted in significant reduction in fecal egg count .

Metabolic Pathways

Triclabendazole is metabolized within the host, principally into its sulphoxide and sulphone metabolites . This biotransformation is carried out by the flavin monooxygenase (FMO) and cytochrome P450 (CYP 450) enzyme systems .

Transport and Distribution

Triclabendazole and its metabolites are absorbed by the outer body covering of the immature and mature worms, causing a reduction in the resting membrane potential . This suggests that triclabendazole is transported and distributed within cells and tissues via absorption.

Subcellular Localization

Given its mechanism of action, it is likely that triclabendazole and its metabolites localize to regions where beta-tubulin is abundant, such as the cytoskeleton of cells .

生物活性

Triclabendazole (TCBZ) is a benzimidazole derivative that is primarily used as an anthelmintic agent for the treatment of infections caused by Fasciola hepatica and Fasciola gigantica. This compound exhibits a range of biological activities, particularly against helminths, and has garnered attention for its potential applications beyond parasitic infections. This article delves into the biological activity of triclabendazole, presenting research findings, case studies, and a comprehensive analysis of its mechanisms of action.

The precise mechanism of action of triclabendazole remains partially understood; however, several key pathways have been identified:

  • Microtubule Disruption : TCBZ disrupts microtubule formation in helminths, leading to tegumental damage and impaired motility. This effect has been demonstrated in studies involving F. hepatica, where TCBZ exposure resulted in autophagic changes and loss of tubulin immunoreactivity in the tegumental syncytium .
  • Metabolite Activity : The sulphoxide metabolite of TCBZ is believed to play a significant role in its efficacy. This metabolite exhibits delayed but potent effects on parasite motility and may act through multiple targets, including inhibition of adenylate cyclase activity .
  • Oxidative Phosphorylation : There is evidence suggesting that TCBZ may uncouple oxidative phosphorylation, which could contribute to its anthelmintic effects .

Efficacy in Treating Fascioliasis

Triclabendazole is notably effective against all stages of Fasciola infections. A review of clinical studies indicates high cure rates following treatment with TCBZ:

StudyDose RegimenCure Rate (%)
Talaie et al. (2019)10 mg/kg (1 dose)63.9%
Talaie et al. (2019)10 mg/kg (2 doses)68.6%
Talaie et al. (2019)10 mg/kg (3 doses)63.9%
Villegas et al. (2020)10 mg/kg (single dose)70% - 100%

Despite these high efficacy rates, treatment failures have been documented, particularly in cases with high baseline egg counts or lower socioeconomic status . A retrospective cohort study in Peru found that only 55% of children achieved parasitologic cure after the first round of treatment, with cure rates declining significantly after multiple doses .

Case Studies

Several case studies highlight the variability in treatment outcomes with triclabendazole:

  • Case Study 1 : A 51-year-old female farmer experienced significant weight loss and abdominal pain due to Fasciola infection. After initial treatment with TCBZ (10 mg/kg), her symptoms improved; however, she relapsed after eight months and continued shedding Fasciola eggs despite subsequent treatments .
  • Case Study 2 : In another case involving chronic fascioliasis, a patient received multiple courses of TCBZ but failed to achieve sustained parasitologic cure, emphasizing the need for ongoing research into resistance mechanisms and alternative treatments .

Broader Biological Activities

Recent studies have also explored the antibacterial properties of triclabendazole. Research indicates that TCBZ exhibits activity against certain Gram-positive bacteria, including methicillin-resistant strains. In combination with other agents, it has demonstrated synergistic effects against Gram-negative pathogens like E. coli and Klebsiella pneumoniae .

属性

IUPAC Name

6-chloro-5-(2,3-dichlorophenoxy)-2-methylsulfanyl-1H-benzimidazole
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C14H9Cl3N2OS/c1-21-14-18-9-5-8(16)12(6-10(9)19-14)20-11-4-2-3-7(15)13(11)17/h2-6H,1H3,(H,18,19)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

NQPDXQQQCQDHHW-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CSC1=NC2=CC(=C(C=C2N1)Cl)OC3=C(C(=CC=C3)Cl)Cl
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C14H9Cl3N2OS
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID7043952
Record name Triclabendazole
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7043952
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

359.7 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Solubility

0.5 [ug/mL] (The mean of the results at pH 7.4)
Record name SID50085431
Source Burnham Center for Chemical Genomics
URL https://pubchem.ncbi.nlm.nih.gov/bioassay/1996#section=Data-Table
Description Aqueous solubility in buffer at pH 7.4
Record name Triclabendazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB12245
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

Mechanism of Action

Triclabendazole is an anthelmintic agent against _Fasciola_ species. The mechanism of action against Fasciola species is not fully understood at this time. In vitro studies and animal studies suggest that triclabendazole and its active metabolites (_sulfoxide_ and _sulfone_) are absorbed by the outer body covering of the immature and mature worms, causing a reduction in the resting membrane potential, the inhibition of tubulin function as well as protein and enzyme synthesis necessary for survival. These metabolic disturbances lead to an inhibition of motility, disruption of the worm outer surface, in addition to the inhibition of spermatogenesis and egg/embryonic cells. **A note on resistance** In vitro studies, in vivo studies, as well as case reports suggest a possibility for the development of resistance to triclabendazole. The mechanism of resistance may be multifactorial and include changes in drug uptake/efflux mechanisms, target molecules, and changes in drug metabolism. The clinical significance of triclabendazole resistance in humans is not yet elucidated.
Record name Triclabendazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB12245
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

68786-66-3
Record name Triclabendazole
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=68786-66-3
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Triclabendazole [USAN:INN:BAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0068786663
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Triclabendazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB12245
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Triclabendazole
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=759250
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Triclabendazole
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7043952
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name 1H-Benzimidazole, 6-chloro-5-(2,3-dichlorophenoxy)-2-(methylthio)
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.127.414
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name TRICLABENDAZOLE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/4784C8E03O
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Melting Point

189-191
Record name Triclabendazole
Source DrugBank
URL https://www.drugbank.ca/drugs/DB12245
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Reactant of Route 1
Triclabendazole
Reactant of Route 2
Reactant of Route 2
Triclabendazole
Reactant of Route 3
Reactant of Route 3
Triclabendazole
Reactant of Route 4
Triclabendazole
Reactant of Route 5
Triclabendazole
Reactant of Route 6
Reactant of Route 6
Triclabendazole

体外研究产品的免责声明和信息

请注意,BenchChem 上展示的所有文章和产品信息仅供信息参考。 BenchChem 上可购买的产品专为体外研究设计,这些研究在生物体外进行。体外研究,源自拉丁语 "in glass",涉及在受控实验室环境中使用细胞或组织进行的实验。重要的是要注意,这些产品没有被归类为药物或药品,他们没有得到 FDA 的批准,用于预防、治疗或治愈任何医疗状况、疾病或疾病。我们必须强调,将这些产品以任何形式引入人类或动物的身体都是法律严格禁止的。遵守这些指南对确保研究和实验的法律和道德标准的符合性至关重要。