molecular formula C10H10N4O2S B1682646 Sulfadiazine CAS No. 68-35-9

Sulfadiazine

Cat. No.: B1682646
CAS No.: 68-35-9
M. Wt: 250.28 g/mol
InChI Key: SEEPANYCNGTZFQ-UHFFFAOYSA-N
Attention: For research use only. Not for human or veterinary use.
In Stock
  • Click on QUICK INQUIRY to receive a quote from our team of experts.
  • With the quality product at a COMPETITIVE price, you can focus more on your research.

Mechanism of Action

Target of Action

Sulfadiazine primarily targets the bacterial enzyme dihydropteroate synthetase . This enzyme plays a crucial role in the synthesis of folic acid, which is essential for bacterial growth and reproduction .

Mode of Action

This compound acts as a competitive inhibitor of dihydropteroate synthetase . It competes with para-aminobenzoic acid (PABA) for binding to the enzyme, thereby inhibiting the synthesis of folic acid . This results in the inhibition of bacterial growth and reproduction .

Biochemical Pathways

The primary biochemical pathway affected by this compound is the folic acid synthesis pathway in bacteria . By inhibiting dihydropteroate synthetase, this compound prevents the proper processing of PABA, which is essential for folic acid synthesis . This leads to a decrease in the production of folic acid, which is necessary for bacterial growth and reproduction .

Pharmacokinetics

This compound is rapidly and extensively absorbed from the gut and is 20 to 55% bound to plasma proteins . Its elimination half-life is 7-12 hours . This compound can cross the placenta, achieving blood concentrations in the fetus of 50 to 90% of those in the mother . It also achieves high concentrations in breast milk (20% of plasma) .

Result of Action

The primary result of this compound’s action is the inhibition of bacterial growth and reproduction . By inhibiting the synthesis of folic acid, this compound prevents bacteria from growing and reproducing effectively . This makes it an effective treatment for a variety of bacterial infections .

Action Environment

The action of this compound can be influenced by various environmental factors. For example, the presence of pus can inhibit its antibacterial action . The degradation of this compound can be influenced by factors such as temperature, pH, and the presence of certain ions .

Scientific Research Applications

Sulfadiazine is a sulfonamide antibiotic with various applications in medicine, pharmacology, and other scientific fields . It functions by inhibiting bacteria's ability to produce folic acid, which is essential for DNA synthesis, thereby preventing the spread of infection .

Scientific Research Applications

Antibacterial Agent: this compound is effective against various bacterial infections, including urinary tract infections . It can also be used topically to treat burn and wound infections . The drug inhibits the bacterial enzyme dihydropteroate synthetase, which is crucial for folic acid synthesis .

Treatment of Infections: this compound is used in the treatment of several infections, such as trachoma and chancroid . Laboratory studies on animals have indicated that this compound has less toxicity compared to other drugs like sulfapyridine and sulfathiazole and is highly effective against common pathogens .

Silver this compound in Wound Care: Silver this compound (SSDZ) is a common choice for treating skin burns . It can be integrated into hydrogels for topical wound treatment because hydrogels have minimal toxicity and can sustain the release of pharmaceuticals .

Antimicrobial Properties of Silver Nanoparticles: Silver nanoparticles (AgNPs), including those incorporating silver this compound, have demonstrated antimicrobial properties and have contributed to the development of nanotechnology . AgNPs can potentially replace traditional antibiotics due to increasing bacterial resistance .

Combination Therapies: this compound can be combined with other substances like hyaluronic acid (HA) to treat conditions such as parastomal skin ulceration . The combination of HA and silver this compound has shown success in promoting healing and reducing pain in such cases .

Data Table: Properties and Applications of this compound

Property/ApplicationDescription
Antibacterial Action Inhibits bacterial enzyme dihydropteroate synthetase, preventing folic acid synthesis
Medical Uses Treats urinary tract infections, trachoma, and chancroid
Topical Treatment Used in silver this compound form for burn and wound infections
Antimicrobial Resistance Silver nanoparticles, including those with this compound, offer a potential alternative to traditional antibiotics facing increased bacterial resistance
Combination Therapy Combined with hyaluronic acid for treating parastomal skin ulceration, promoting tissue repair

Case Studies

Parastomal Ulcer Healing: A case study demonstrated the successful treatment of chronic parastomal skin ulceration using a combination cream of 0.2% Hyaluronic acid and 1% Silver this compound . Patients treated with this combination experienced complete healing, reduced pain, and decreased purulent fluid, leading to a reduced cost of treatment compared to standard protocols .

Silver this compound Hydrogels for Wound Treatment: Silver this compound has been integrated into hydrogels for wound treatment due to the hydrogels' low toxicity and capacity for extended pharmaceutical release .

Research Findings and Insights

Efficacy of Silver this compound: A systematic review comparing Silver this compound with other dressings for burns showed a statistically significant difference in healing time for silver dressings . While some animal studies support the use of Silver this compound for partial-thickness burns, others question its effectiveness .

Toxicity and Safety: Laboratory studies on animals suggest that this compound has lower toxicity compared to sulfapyridine and sulfathiazole .

Biological Activity

Sulfadiazine is a sulfonamide antibiotic that has been widely studied for its biological activity, particularly in the treatment of bacterial infections and its potential applications in various medical fields. This article discusses the compound's mechanisms of action, antimicrobial properties, clinical applications, and recent research findings.

This compound functions primarily by inhibiting bacterial folic acid synthesis. It acts as a competitive antagonist of para-aminobenzoic acid (PABA), a substrate required for the synthesis of folate in bacteria. By blocking this pathway, this compound effectively prevents bacterial growth and reproduction, leading to cell death. This mechanism is common among sulfonamides, which have been utilized since their introduction in the 1930s.

Antimicrobial Properties

This compound exhibits a broad spectrum of antimicrobial activity against various pathogens. It has been shown to be effective against:

  • Gram-positive bacteria : Staphylococcus aureus, Streptococcus pyogenes
  • Gram-negative bacteria : Escherichia coli, Pseudomonas aeruginosa
  • Fungi : Candida albicans
  • Protozoa : Toxoplasma gondii

Comparative Antimicrobial Efficacy

Recent studies have highlighted the enhanced efficacy of this compound when used in combination with metal complexes. For instance, metal complexes of this compound have demonstrated superior antibacterial activity compared to the free ligand itself, particularly against resistant strains of bacteria .

PathogenMinimum Inhibitory Concentration (MIC)
Staphylococcus aureus32 µg/mL
Escherichia coli16 µg/mL
Pseudomonas aeruginosa64 µg/mL
Candida albicans8 µg/mL

Clinical Applications

This compound is commonly used in clinical settings for treating various infections, including:

  • Toxoplasmosis : Often administered in combination with pyrimethamine for effective treatment.
  • Burn wounds : Silver this compound is a topical formulation used extensively for burn management due to its antimicrobial properties .

Case Studies

  • Silver this compound in Burn Treatment :
    A clinical trial involving children with severe burns demonstrated that silver this compound significantly reduced infection rates and facilitated wound healing compared to traditional treatments. The study reported no progression to critical infection stages among treated patients .
  • Aerosol Formulation for Pressure Ulcers :
    A novel aerosol formulation combining silver this compound with lidocaine and vitamin A showed promising results in treating scalp pressure ulcers in ICU patients. The treatment was associated with improved healing rates and reduced costs compared to conventional dressings .

Recent Research Findings

Recent studies have explored the multifaceted biological activities of this compound beyond its antibacterial properties:

  • Anticancer Activity : Research indicates that this compound exhibits antiproliferative effects on human liver cancer (HepG2) and breast cancer (MCF7) cell lines by inhibiting the COX-2/PGE2 signaling pathway. The IC50 values were determined to be approximately 245.69 µM for HepG2 cells and 215.68 µM for MCF7 cells .
  • Cytotoxic Effects : this compound derivatives have been synthesized and evaluated for their cytotoxicity against various cancer cell lines, revealing potential as therapeutic agents in oncology .

Properties

IUPAC Name

4-amino-N-pyrimidin-2-ylbenzenesulfonamide
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C10H10N4O2S/c11-8-2-4-9(5-3-8)17(15,16)14-10-12-6-1-7-13-10/h1-7H,11H2,(H,12,13,14)
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

SEEPANYCNGTZFQ-UHFFFAOYSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1=CN=C(N=C1)NS(=O)(=O)C2=CC=C(C=C2)N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C10H10N4O2S
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID7044130
Record name Sulfadiazine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7044130
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

250.28 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Physical Description

Solid
Record name Sulfadiazine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014503
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Solubility

6.01e-01 g/L
Record name Sulfadiazine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00359
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name Sulfadiazine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014503
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Mechanism of Action

Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid.
Record name Sulfadiazine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00359
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

68-35-9
Record name Sulfadiazine
Source CAS Common Chemistry
URL https://commonchemistry.cas.org/detail?cas_rn=68-35-9
Description CAS Common Chemistry is an open community resource for accessing chemical information. Nearly 500,000 chemical substances from CAS REGISTRY cover areas of community interest, including common and frequently regulated chemicals, and those relevant to high school and undergraduate chemistry classes. This chemical information, curated by our expert scientists, is provided in alignment with our mission as a division of the American Chemical Society.
Explanation The data from CAS Common Chemistry is provided under a CC-BY-NC 4.0 license, unless otherwise stated.
Record name Sulfadiazine [USP:INN:BAN:JAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0000068359
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name Sulfadiazine
Source DrugBank
URL https://www.drugbank.ca/drugs/DB00359
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name sulfadiazine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=757324
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name sulfadiazine
Source DTP/NCI
URL https://dtp.cancer.gov/dtpstandard/servlet/dwindex?searchtype=NSC&outputformat=html&searchlist=35600
Description The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and private-sector research communities worldwide to facilitate the discovery and development of new cancer therapeutic agents.
Explanation Unless otherwise indicated, all text within NCI products is free of copyright and may be reused without our permission. Credit the National Cancer Institute as the source.
Record name Benzenesulfonamide, 4-amino-N-2-pyrimidinyl-
Source EPA Chemicals under the TSCA
URL https://www.epa.gov/chemicals-under-tsca
Description EPA Chemicals under the Toxic Substances Control Act (TSCA) collection contains information on chemicals and their regulations under TSCA, including non-confidential content from the TSCA Chemical Substance Inventory and Chemical Data Reporting.
Record name Sulfadiazine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID7044130
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name Sulfadiazine
Source European Chemicals Agency (ECHA)
URL https://echa.europa.eu/substance-information/-/substanceinfo/100.000.623
Description The European Chemicals Agency (ECHA) is an agency of the European Union which is the driving force among regulatory authorities in implementing the EU's groundbreaking chemicals legislation for the benefit of human health and the environment as well as for innovation and competitiveness.
Explanation Use of the information, documents and data from the ECHA website is subject to the terms and conditions of this Legal Notice, and subject to other binding limitations provided for under applicable law, the information, documents and data made available on the ECHA website may be reproduced, distributed and/or used, totally or in part, for non-commercial purposes provided that ECHA is acknowledged as the source: "Source: European Chemicals Agency, http://echa.europa.eu/". Such acknowledgement must be included in each copy of the material. ECHA permits and encourages organisations and individuals to create links to the ECHA website under the following cumulative conditions: Links can only be made to webpages that provide a link to the Legal Notice page.
Record name SULFADIAZINE
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/0N7609K889
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.
Record name Sulfadiazine
Source Human Metabolome Database (HMDB)
URL http://www.hmdb.ca/metabolites/HMDB0014503
Description The Human Metabolome Database (HMDB) is a freely available electronic database containing detailed information about small molecule metabolites found in the human body.
Explanation HMDB is offered to the public as a freely available resource. Use and re-distribution of the data, in whole or in part, for commercial purposes requires explicit permission of the authors and explicit acknowledgment of the source material (HMDB) and the original publication (see the HMDB citing page). We ask that users who download significant portions of the database cite the HMDB paper in any resulting publications.

Synthesis routes and methods

Procedure details

An aqueous solution consisting of 0.5 g sodium sulfadiazine, 0.5 ml ethyl alcohol, 13 ml of 20% sodium sulfate and 20 ml of 5% gelatin (type B: acid processed) was titrated, while under constant agitation with a magnetic stirrer, with 18.4 ml of 0.1N hydrochloric acid solution. This procedure resulted in a white suspension of microencapsulated sulfadiazine particles. The suspension was then stirred for an additional 15 minutes, following which it was poured into 200 ml of cold (5° C.) 7% sodium sulfate solution, and stirred for 30 minutes at ice-bath temperature. This procedure caused gelling of the liquid gelatin shell of the microcapsules. The entire process was monitored by observation of samples in the optical microscope. The microcapsules were of assymetric appearance and of a size less than 10 μm.
Name
sodium sulfadiazine
Quantity
0.5 g
Type
reactant
Reaction Step One
Quantity
13 mL
Type
reactant
Reaction Step Two
Quantity
18.4 mL
Type
reactant
Reaction Step Three
Quantity
0.5 mL
Type
solvent
Reaction Step Four

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Sulfadiazine
Reactant of Route 2
Reactant of Route 2
Sulfadiazine
Reactant of Route 3
Reactant of Route 3
Sulfadiazine
Reactant of Route 4
Sulfadiazine
Reactant of Route 5
Sulfadiazine
Reactant of Route 6
Sulfadiazine

Disclaimer and Information on In-Vitro Research Products

Please be aware that all articles and product information presented on BenchChem are intended solely for informational purposes. The products available for purchase on BenchChem are specifically designed for in-vitro studies, which are conducted outside of living organisms. In-vitro studies, derived from the Latin term "in glass," involve experiments performed in controlled laboratory settings using cells or tissues. It is important to note that these products are not categorized as medicines or drugs, and they have not received approval from the FDA for the prevention, treatment, or cure of any medical condition, ailment, or disease. We must emphasize that any form of bodily introduction of these products into humans or animals is strictly prohibited by law. It is essential to adhere to these guidelines to ensure compliance with legal and ethical standards in research and experimentation.