molecular formula C11H16ClN5 B194036 プログアニル CAS No. 500-92-5

プログアニル

カタログ番号: B194036
CAS番号: 500-92-5
分子量: 259.77 g/mol
InChIキー: SSOLNOMRVKKSON-WFGJKAKNSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

科学的研究の応用

Clinical Efficacy

Proguanil is most commonly administered in combination with atovaquone, marketed as Malarone. This combination has demonstrated high efficacy rates in preventing and treating malaria. For instance, a randomized placebo-controlled study showed that this combination was 100% effective in preventing malaria among children living in endemic areas . Another study highlighted that proguanil effectively sensitizes malaria parasites to atovaquone, thereby enhancing treatment outcomes even in cases where resistance to other antimalarials is present .

Table 1: Efficacy Data from Clinical Studies

Study ReferencePopulationTreatment GroupEfficacy RateNotes
ChildrenAtovaquone + Proguanil100%High efficacy in endemic areas
AdultsAtovaquone + Proguanil>95%Effective for non-immune patients
MixedAtovaquone + Proguanil100%Well-tolerated with minimal side effects

Case Studies

  • Atovaquone/Proguanil-Induced Esophageal Ulcers : A case report documented a healthy medical student who developed esophageal ulcers after taking atovaquone/proguanil without water. This incident underscores the importance of proper administration methods for medications .
  • Treatment of Imported Malaria : In a study involving travelers returning from endemic regions, atovaquone/proguanil was successfully used to treat multiple cases of P. falciparum and P. vivax malaria. The treatment was effective even in patients who had previously failed other treatments .
  • Resistance Cases : A cluster of malaria cases treated with atovaquone/proguanil revealed resistance mutations in the P. falciparum genome. This highlights the ongoing challenge of drug resistance and the need for continuous monitoring and development of new treatment strategies .

Future Applications

Research is ongoing to explore additional applications of proguanil beyond malaria treatment. Its potential as an antifungal agent is being investigated, particularly for use in immunocompromised patients at risk for fungal infections . Furthermore, proguanil's role in combination therapies with other antimalarials continues to be a focus area due to its ability to enhance the efficacy of existing drugs.

生化学分析

Biochemical Properties

Proguanil is a biguanide derivative that is converted to an active metabolite called cycloguanil . It exerts its antimalarial action by inhibiting the enzyme, dihydrofolate reductase, which is involved in the reproduction of the malaria parasite, Plasmodium falciparum and Plasmodium vivax . This inhibition blocks the biosynthesis of purines and pyrimidines, which are essential for DNA synthesis and cell multiplication .

Cellular Effects

Proguanil works by stopping the malaria parasite, Plasmodium falciparum and Plasmodium vivax, from reproducing once it is in the red blood cells . It does this by inhibiting the enzyme, dihydrofolate reductase, which is involved in the reproduction of the parasite . This leads to failure of nuclear division at the time of schizont formation in erythrocytes and liver .

Molecular Mechanism

The molecular mechanism of Proguanil involves the inhibition of the enzyme dihydrofolate reductase of plasmodia . This inhibition blocks the biosynthesis of purines and pyrimidines, which are essential for DNA synthesis and cell multiplication . This leads to failure of nuclear division at the time of schizont formation in erythrocytes and liver .

Temporal Effects in Laboratory Settings

Proguanil has been shown to have potent, but slow-acting, in vitro anti-plasmodial activity . The potent fast-acting activity of proguanil is attributed to the dihydrofolate reductase inhibitor cycloguanil .

Dosage Effects in Animal Models

While specific dosage effects of Proguanil in animal models were not found in the search results, it is known that Proguanil is extensively absorbed in rats . In both species, toxicity was related to proguanil exposure, the principal manifestations being salivation, emesis, and loss of body weight .

Metabolic Pathways

Proguanil is variably metabolized in the liver by cytochrome P450 isoenzymes to the active triazine metabolite, cycloguanil . This variable metabolism of proguanil may have profound clinical importance in poor metabolizers such as the Asian and African populations at risk for malaria infection .

Transport and Distribution

Proguanil and its metabolite cycloguanil were found to be substrates of organic cation transporter 1 (OCT1), organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1) and multidrug and toxin extrusion 2-K (MATE2-K) . These transporters play a crucial role in the distribution and excretion of Proguanil .

Subcellular Localization

The specific subcellular localization of Proguanil was not found in the search results. Given its mechanism of action, it can be inferred that Proguanil likely localizes to the site of the enzyme dihydrofolate reductase, which is involved in the reproduction of the malaria parasite .

化学反応の分析

反応の種類: : プログアニル D6 は、以下を含むさまざまな化学反応を起こします。

一般的な試薬および条件

主な生成物

科学研究における用途

プログアニル D6 は、以下を含む幅広い科学研究用途があります。

生物活性

Proguanil is an antimalarial compound primarily used in the prevention and treatment of malaria, particularly against Plasmodium falciparum and Plasmodium vivax . Its biological activity is closely linked to its metabolism into the active metabolite cycloguanil, which exerts significant effects on the malaria parasites. This article explores the biological activity of proguanil, including its mechanisms of action, pharmacokinetics, clinical efficacy, and safety profile.

Proguanil functions as a dihydrofolate reductase (DHFR) inhibitor , which is crucial for the biosynthesis of purines and pyrimidines necessary for DNA synthesis in malaria parasites. The inhibition of DHFR leads to a failure in nuclear division during the schizont formation phase within erythrocytes and liver cells .

Key Mechanisms:

  • Inhibition of Dihydrofolate Reductase : Proguanil and its metabolite cycloguanil inhibit DHFR in malaria parasites, disrupting folate metabolism essential for DNA replication .
  • Synergistic Action with Atovaquone : When combined with atovaquone (as in Malarone), proguanil enhances the efficacy against resistant strains of malaria by targeting different pathways in the parasite's lifecycle .

Pharmacokinetics

Proguanil is rapidly absorbed following oral administration, with peak plasma concentrations occurring within 1-3 hours. It has a high bioavailability (approximately 75%) and is extensively metabolized in the liver to cycloguanil via cytochrome P450 enzymes (CYP2C19) .

Pharmacokinetic Parameters:

ParameterValue
AbsorptionRapid and well absorbed
Bioavailability~75%
Protein Binding~75%
MetabolismHepatic (CYP2C19)
Elimination Half-life8-10 hours

Clinical Efficacy

Numerous studies have demonstrated the high efficacy of proguanil, particularly when used in combination with atovaquone. A systematic review indicated that this combination therapy has a prophylactic efficacy of approximately 95.8% against malaria .

Case Studies:

  • Study on Children : In a randomized controlled trial involving 320 children in Gabon, none of the children receiving atovaquone-proguanil developed positive blood smears during chemosuppression, compared to 25 cases in the placebo group (p<0.001)【6】【8】.
  • Efficacy Against Resistant Strains : Proguanil has shown effectiveness even in regions where resistance to other antimalarial drugs is prevalent. For example, high antimalarial efficacy was observed in patients with poor metabolizer genotypes for CYP2C19【4】【5】.

Safety Profile

Proguanil is generally well-tolerated, with a lower incidence of adverse effects compared to alternative treatments. Common side effects include gastrointestinal disturbances such as nausea and vomiting【5】【6】. A meta-analysis reported fewer treatment-related adverse events leading to discontinuation among patients taking atovaquone-proguanil compared to those on other regimens【2】.

Adverse Effects Overview:

Adverse EffectIncidence (%)
Nausea33%
Vomiting29%
Abdominal PainVaries

特性

Key on ui mechanism of action

Proguanil inhibits the dihydrofolate reductase of plasmodia and thereby blocks the biosynthesis of purines and pyrimidines, which are essential for DNA synthesis and cell multiplication. This leads to failure of nuclear division at the time of schizont formation in erythrocytes and liver.

CAS番号

500-92-5

分子式

C11H16ClN5

分子量

259.77 g/mol

IUPAC名

1-[amino-(4-chloroanilino)methylidene]-2-(1,1,1,3,3,3-hexadeuteriopropan-2-yl)guanidine

InChI

InChI=1S/C11H16ClN5/c1-7(2)15-10(13)17-11(14)16-9-5-3-8(12)4-6-9/h3-7H,1-2H3,(H5,13,14,15,16,17)/i1D3,2D3

InChIキー

SSOLNOMRVKKSON-WFGJKAKNSA-N

SMILES

CC(C)N=C(N)N=C(N)NC1=CC=C(C=C1)Cl

異性体SMILES

[2H]C([2H])([2H])C(C([2H])([2H])[2H])N=C(N)N=C(N)NC1=CC=C(C=C1)Cl

正規SMILES

CC(C)N=C(N)N=C(N)NC1=CC=C(C=C1)Cl

melting_point

129 °C

Key on ui other cas no.

500-92-5

物理的記述

Solid

純度

> 95%

数量

Milligrams-Grams

関連するCAS

637-32-1 (hydrochloride)

溶解性

2.86e-01 g/L

同義語

Bigumal
Chlorguanid
Chloriguane
Chloroguanide
Chloroguanide Hydrochloride
Hydrochloride, Chloroguanide
Hydrochloride, Proguanil
Paludrin
Paludrine
Proguanil
Proguanil Hydrochloride

製品の起源

United States

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Proguanil
Reactant of Route 2
Reactant of Route 2
Proguanil
Reactant of Route 3
Reactant of Route 3
Proguanil
Reactant of Route 4
Reactant of Route 4
Proguanil
Reactant of Route 5
Reactant of Route 5
Proguanil
Reactant of Route 6
Reactant of Route 6
Proguanil
Customer
Q & A

Q1: How does Proguanil exert its antimalarial effect?

A1: Proguanil itself has weak antimalarial activity. Its effectiveness stems from its active metabolite, Cycloguanil, a potent inhibitor of dihydrofolate reductase (DHFR) []. DHFR is a crucial enzyme in the folate metabolic pathway, essential for DNA synthesis and cellular replication in parasites like Plasmodium falciparum []. By inhibiting DHFR, Cycloguanil disrupts DNA synthesis and ultimately kills the parasite [, ].

Q2: Are there other mechanisms by which Proguanil impacts Plasmodium falciparum?

A2: Research suggests Proguanil, in combination with Atovaquone, might interfere with mitochondrial electron transport and collapse mitochondrial membrane potential in the parasite, further contributing to its antimalarial activity [].

Q3: Does Proguanil affect other stages of the Plasmodium life cycle besides the erythrocytic stage?

A3: Yes, both Proguanil and Atovaquone demonstrate activity against gametocytes and pre-erythrocytic (hepatic) stages of malaria parasites []. This is supported by studies indicating that short-term Proguanil administration might provide causal prophylaxis for Plasmodium vivax by inhibiting liver-stage schizonts, although it doesn't seem to prevent late attacks related to hypnozoite reactivation [].

Q4: How is Proguanil metabolized in the human body?

A4: Proguanil is primarily metabolized in the liver by cytochrome P450 (CYP) enzymes, specifically CYP2C19 and CYP3A4 [, ]. The primary metabolic pathway involves CYP2C19-mediated conversion to its active metabolite, Cycloguanil [, ].

Q5: What factors contribute to the variability in Proguanil metabolism among individuals?

A5: Inter-individual variability in Proguanil metabolism is influenced by several factors, primarily genetic polymorphisms in the CYP2C19 gene [, ]. Individuals homozygous for the CYP2C19*2 allele exhibit significantly reduced metabolic capacity, leading to higher Proguanil and lower Cycloguanil levels []. Other factors include co-administration of drugs that are CYP2C19 inducers or inhibitors [], and variations in the expression and activity of other enzymes involved in Proguanil metabolism, like CYP3A4 [].

Q6: How is Proguanil eliminated from the body?

A6: Both Proguanil and Cycloguanil are predominantly eliminated through the kidneys []. Therefore, dosage adjustments are necessary for patients with renal impairment to prevent drug accumulation [].

Q7: Are there documented cases of resistance to Proguanil?

A7: Yes, Proguanil resistance has been observed and is primarily attributed to point mutations in the dihydrofolate reductase (DHFR) gene of Plasmodium falciparum [, ]. The S108N mutation is particularly associated with Proguanil resistance [, ].

Q8: Is there cross-resistance between Proguanil and other antimalarial drugs?

A8: Yes, cross-resistance has been observed between Proguanil and Pyrimethamine, another antifolate drug []. This is attributed to their shared mechanism of action, both targeting the DHFR enzyme in the parasite. The presence of the triple mutant DHFR haplotype (S108N+N51I+C59N) in Plasmodium falciparum has been linked to resistance to both drugs [, ].

Q9: Does Proguanil interact with other drugs?

A9: Yes, Proguanil's metabolism can be affected by co-administration with other drugs metabolized by CYP2C19, such as Phenytoin []. Concomitant use of Phenytoin, a CYP2C19 inducer, can decrease Proguanil's area under the curve (AUC) and maximum concentration (Cmax), potentially impacting its efficacy [].

Q10: Beyond malaria, are there other potential therapeutic applications for Proguanil?

A10: Emerging research suggests that Proguanil may have anti-cancer properties, particularly in breast cancer. Studies have shown that Proguanil inhibits the growth of breast cancer cells in vitro and in vivo, potentially by inducing oxidative stress, disrupting mitochondrial function, and triggering apoptosis [, ].

Q11: What are the key considerations in formulating Proguanil for therapeutic use?

A11: Proguanil formulations aim to optimize solubility, bioavailability, and stability []. The choice of excipients and manufacturing processes can significantly influence these factors. For instance, some herbal formulations may significantly impact the dissolution profile of Proguanil tablets, potentially altering its bioavailability and warranting further investigation for potential herb-drug interactions [].

Q12: What analytical techniques are commonly employed to quantify Proguanil and its metabolites?

A12: High-performance liquid chromatography (HPLC) is widely used to measure Proguanil and its metabolites in biological samples like plasma and urine [, , ]. Ultra-performance liquid chromatography (UPLC) offers enhanced speed and sensitivity for pharmacokinetic studies [].

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。