molecular formula C21H27N5 B1662892 AMD-070 CAS No. 558447-26-0

AMD-070

Numéro de catalogue: B1662892
Numéro CAS: 558447-26-0
Poids moléculaire: 349.5 g/mol
Clé InChI: WVLHHLRVNDMIAR-IBGZPJMESA-N
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Description

Mavorixafor est un antagoniste sélectif du récepteur 4 de la chimiokine C-X-C (CXCR4) biodisponible par voie orale. Il est principalement développé pour le traitement du syndrome WHIM (Warts, Hypogammaglobulinémie, Infections et Myelokathexis), une maladie immunodéficitaire primaire rare. Mavorixafor est également étudié pour son potentiel dans le traitement de divers cancers, notamment le mélanome, et d'autres troubles neutropéniques chroniques .

Applications De Recherche Scientifique

Mavorixafor a une large gamme d'applications en recherche scientifique :

Mécanisme d'action

Mavorixafor exerce ses effets en se liant sélectivement au récepteur CXCR4, bloquant la liaison de son ligand naturel, le ligand 12 de la chimiokine C-X-C (également connu sous le nom de facteur dérivé du stroma-1). Cette inhibition empêche l'activation des voies de signalisation CXCR4, qui sont impliquées dans le trafic des cellules immunitaires, l'homing des cellules souches hématopoïétiques et la progression tumorale. En modulant ces voies, mavorixafor améliore l'infiltration et l'activation des cellules immunitaires dans le microenvironnement tumoral, conduisant à des réponses antitumorales améliorées .

Mécanisme D'action

Target of Action

Mavorixafor, also known as AMD-070, primarily targets the CXC chemokine receptor 4 (CXCR4) . CXCR4 is a G protein-coupled receptor that plays a crucial role in cell signaling and function . It is involved in various physiological processes, including immune response and hematopoiesis .

Mode of Action

Mavorixafor acts as a selective and reversible antagonist of CXCR4 . It binds to CXCR4 and prevents the interaction of CXCR4 with its natural ligand, stromal cell-derived factor 1 (SDF-1 or CXCL12) . This inhibition of receptor activation results in decreased proliferation and migration of cells that overexpress CXCR4 .

Biochemical Pathways

The primary biochemical pathway affected by Mavorixafor involves the SDF-1/CXCR4 signaling pathway . In conditions such as WHIM syndrome, mutations in the CXCR4 gene lead to overactivation of this pathway . By blocking CXCR4, Mavorixafor counteracts the effects of these disease-causing mutations, thereby modulating the downstream effects of the SDF-1/CXCR4 pathway .

Pharmacokinetics

Mavorixafor demonstrates nonlinear pharmacokinetics with greater than dose-proportional increases in maximum concentration (Cmax) and area under the curve (AUC) over a dose range of 50 mg to 400 mg . Steady-state concentrations of Mavorixafor are reached after approximately 9 to 12 days at the highest approved recommended dosage in healthy subjects . Mavorixafor is primarily eliminated by metabolism, with less than 1% of the administered oral dose appearing unchanged in the urine .

Result of Action

The molecular and cellular effects of Mavorixafor’s action primarily involve an increase in the mobilization and trafficking of white blood cells from the bone marrow . This leads to an increase in the number of circulating mature neutrophils and lymphocytes . Mavorixafor dose-dependently increases absolute neutrophil count and absolute lymphocyte count .

Action Environment

The action, efficacy, and stability of Mavorixafor can be influenced by various environmental factors. For instance, food intake has been shown to reduce the bioavailability of Mavorixafor, leading to a decrease in its maximum concentration and area under the curve . Therefore, the timing of Mavorixafor administration in relation to meals may be an important consideration in its use .

Méthodes De Préparation

Voies de synthèse et conditions réactionnelles

La synthèse du mavorixafor implique plusieurs étapes, en commençant par des matières premières disponibles dans le commerceLes conditions réactionnelles impliquent généralement l'utilisation de solvants organiques, de catalyseurs et de températures contrôlées pour garantir un rendement et une pureté élevés .

Méthodes de production industrielle

La production industrielle de mavorixafor suit une voie de synthèse similaire, mais est optimisée pour une fabrication à grande échelle. Cela inclut l'utilisation de réacteurs à écoulement continu, de systèmes de purification automatisés et de mesures de contrôle qualité strictes pour assurer la cohérence et la conformité aux normes réglementaires .

Analyse Des Réactions Chimiques

Types de réactions

Mavorixafor subit diverses réactions chimiques, notamment :

Réactifs et conditions courants

Produits principaux

Les principaux produits formés à partir de ces réactions comprennent divers dérivés de mavorixafor avec des groupes fonctionnels modifiés, qui peuvent être étudiés plus avant pour leurs propriétés pharmacologiques .

Comparaison Avec Des Composés Similaires

Composés similaires

Unicité

Mavorixafor est unique par sa biodisponibilité orale et sa sélectivité pour le récepteur CXCR4. Contrairement au plerixafor et à l'AMD3100, qui sont administrés par injection, mavorixafor peut être pris par voie orale, ce qui le rend plus pratique pour les patients. De plus, sa sélectivité pour le CXCR4 réduit la probabilité d'effets hors cible, améliorant son profil de sécurité .

Propriétés

IUPAC Name

N'-(1H-benzimidazol-2-ylmethyl)-N'-[(8S)-5,6,7,8-tetrahydroquinolin-8-yl]butane-1,4-diamine
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C21H27N5/c22-12-3-4-14-26(15-20-24-17-9-1-2-10-18(17)25-20)19-11-5-7-16-8-6-13-23-21(16)19/h1-2,6,8-10,13,19H,3-5,7,11-12,14-15,22H2,(H,24,25)/t19-/m0/s1
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

WVLHHLRVNDMIAR-IBGZPJMESA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

C1CC(C2=C(C1)C=CC=N2)N(CCCCN)CC3=NC4=CC=CC=C4N3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

C1C[C@@H](C2=C(C1)C=CC=N2)N(CCCCN)CC3=NC4=CC=CC=C4N3
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C21H27N5
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

DSSTOX Substance ID

DTXSID60971247
Record name N~1~-[(1H-Benzimidazol-2-yl)methyl]-N~1~-(5,6,7,8-tetrahydroquinolin-8-yl)butane-1,4-diamine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID60971247
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.

Molecular Weight

349.5 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Mechanism of Action

Chemokine receptors expressed on the surface of immune cells are known to play a critical role in virus infection and transmission. CXCR4, and another chemokine receptor CCR5, are involved in HIV infection. The process of HIV entry begins with binding of the viral envelope glycoprotein to both the CD4 receptor and one of only two chemokine receptors, and ends with fusion of viral and cell membranes. Viral entry provides novel therapeutic targets against HIV. To date, at least 3 sub classes of HIV viral entry/fusion inhibitors have emerged: 1. CD4 binding or attachment - targets initial recognition and binding of the viral glycoprotein gp120 to the cell-surface CD4 antigen. 2. Chemokine co-receptor binding - targets binding of virus to the CCR5 or CXCR4 co-receptor. 3. Fusion Inhibition - targets the viral glycoprotein gp41 inhibiting the fusion of virus with the cell. Different strains of HIV prefer one receptor or the other, or may use either receptor to infect cells. * 35% of strains use both CXCR4 and CCR5 * 5% of strains are pure CXCR4 using * 60% of strains are pure CCR5 using * An infected individual may harbor different levels of both CXCR4 and CCR5 using virus * CXCR4 using virus independently predicts CD4 decline and HIV clinical progression and is associated with earlier mortality
Record name AMD-070
Source DrugBank
URL https://www.drugbank.ca/drugs/DB05501
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)

CAS No.

558447-26-0
Record name Mavorixafor [USAN]
Source ChemIDplus
URL https://pubchem.ncbi.nlm.nih.gov/substance/?source=chemidplus&sourceid=0558447260
Description ChemIDplus is a free, web search system that provides access to the structure and nomenclature authority files used for the identification of chemical substances cited in National Library of Medicine (NLM) databases, including the TOXNET system.
Record name AMD-070
Source DrugBank
URL https://www.drugbank.ca/drugs/DB05501
Description The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information.
Explanation Creative Common's Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/legalcode)
Record name N~1~-[(1H-Benzimidazol-2-yl)methyl]-N~1~-(5,6,7,8-tetrahydroquinolin-8-yl)butane-1,4-diamine
Source EPA DSSTox
URL https://comptox.epa.gov/dashboard/DTXSID60971247
Description DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.
Record name MAVORIXAFOR
Source FDA Global Substance Registration System (GSRS)
URL https://gsrs.ncats.nih.gov/ginas/app/beta/substances/0G9LGB5O2W
Description The FDA Global Substance Registration System (GSRS) enables the efficient and accurate exchange of information on what substances are in regulated products. Instead of relying on names, which vary across regulatory domains, countries, and regions, the GSRS knowledge base makes it possible for substances to be defined by standardized, scientific descriptions.
Explanation Unless otherwise noted, the contents of the FDA website (www.fda.gov), both text and graphics, are not copyrighted. They are in the public domain and may be republished, reprinted and otherwise used freely by anyone without the need to obtain permission from FDA. Credit to the U.S. Food and Drug Administration as the source is appreciated but not required.

Synthesis routes and methods I

Procedure details

To a solution of N1-(1-(2-(trimethylsilyl)ethoxymethyl)-1H-Benzimidazol-2-ylmethyl)-N1-(5,6,7,8-tetrahydro-quinolin-8-yl)-butane-1,4-diamine (73 mg, 0.16 mmol) in CH2Cl2 (2 mL) was added trifluoroacetic acid (4 mL) and the resultant solution was stirred at room temperature overnight then concentrated under reduced pressure. The residue was dissolved in CH2Cl2 (10 mL) and water (5 mL) and treated with NaOH (10 M, ˜2 mL) until the aqueous phase was basic (pH 14). The phases were separated and the aqueous phase was extracted with CH2Cl2 (3×10 mL). The combined organic extracts were dried (Na2SO4) and concentrated. Purification of the crude material by radial chromatography on silica gel (1 mm plate, 15:1:1 CH2Cl2—CH3OH—NH4OH) provided 37 mg of N-(1H-Benzimidazol-2-ylmethyl)-N1-(5,6,7,8-tetrahydro-quinolin-8-yl)-butane-1,4-diamine as a white foam.
Name
N1-(1-(2-(trimethylsilyl)ethoxymethyl)-1H-Benzimidazol-2-ylmethyl)-N1-(5,6,7,8-tetrahydro-quinolin-8-yl)-butane-1,4-diamine
Quantity
73 mg
Type
reactant
Reaction Step One
Quantity
4 mL
Type
reactant
Reaction Step One
Quantity
2 mL
Type
solvent
Reaction Step One
[Compound]
Name
resultant solution
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two

Synthesis routes and methods II

Procedure details

To a solution of (1-tert-butoxycarbonyl-1H-Benzimidazol-2-ylmethyl)-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine (0.169 g, 0.451 mmol) in CH3CN (5 mL) was added N,N-diisopropylethylamine (0.25 mL, 1.44 mmol) followed by 4-bromobutyronitrile (0.10 mL, 1.01 mmol). The resultant mixture was heated to 80° C. for 5 d then cooled to room temperature. The mixture was concentrated and the residue was partitioned between CH2Cl2 (20 mL) and brine (10 mL). The phases were separated and the aqueous phase was extracted with CH2Cl2 (3×10 mL). The combined organic extracts were dried (Na2SO4) and concentrated. Purification of the crude material by column chromatography on silica gel (30:1:1 CH2Cl2—CH3OH—NH4OH) provided 108 mg (54%) of a yellow foam.
Name
(1-tert-butoxycarbonyl-1H-Benzimidazol-2-ylmethyl)-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine
Quantity
0.169 g
Type
reactant
Reaction Step One
Quantity
0.25 mL
Type
reactant
Reaction Step One
Name
Quantity
5 mL
Type
solvent
Reaction Step One
Quantity
0.1 mL
Type
reactant
Reaction Step Two
[Compound]
Name
resultant mixture
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Three
Yield
54%

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Mavorixafor
Reactant of Route 2
Mavorixafor
Reactant of Route 3
Mavorixafor
Reactant of Route 4
Mavorixafor
Reactant of Route 5
Reactant of Route 5
Mavorixafor
Reactant of Route 6
Mavorixafor

Avertissement et informations sur les produits de recherche in vitro

Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.