molecular formula C19H30D4ClNO2 B602466 FTY720-d4 Hydrochloride CAS No. 1346604-90-7

FTY720-d4 Hydrochloride

カタログ番号: B602466
CAS番号: 1346604-90-7
分子量: 347.96
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

説明

Fingolimod-D4 Hydrochloride is a labelled analogue of Fingolimod. Fingolimod is an immunosuppressive agent used for the treatment of relapsing multiple sclerosis. It is a sphingosine-1-phosphate receptor modulator preventing lymphocyte emigration to participate in the autoimmune reaction.

作用機序

Target of Action

Fingolimod-d4 Hydrochloride, also known as FTY720-d4 Hydrochloride, primarily targets the sphingosine 1-phosphate receptors (S1PRs) found on lymphocytes and other organs . The modulation of these receptors is crucial in managing multiple sclerosis (MS) symptoms .

Mode of Action

Fingolimod-d4 Hydrochloride acts as a sphingosine 1-phosphate receptor modulator . It is metabolized to its active form, fingolimod-phosphate, which binds to sphingosine 1-phosphate receptors 1, 3, 4, and 5 .

Biochemical Pathways

Fingolimod-d4 Hydrochloride affects several biochemical pathways. It induces metabolic reprogramming in brain regions, upregulating oxidative phosphorylation while downregulating glycolysis and the pentose phosphate pathway . It also modulates neuroinflammation by upregulating retrograde endocannabinoid signaling and autophagy pathways, and downregulating neuroinflammation-related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway .

Pharmacokinetics

It’s known that the compound is given orally . More research is needed to fully understand the ADME properties of Fingolimod-d4 Hydrochloride and their impact on bioavailability.

Result of Action

The molecular and cellular effects of Fingolimod-d4 Hydrochloride’s action are profound. It reduces the number of lymphocytes in the peripheral blood, which is believed to be effective in treating MS due to the reduced lymphocytes into the CNS . It also induces numerous biological effects, including endothelial cell-cell adhesion, angiogenesis, vascular integrity, and cardiovascular function .

Action Environment

The action environment of Fingolimod-d4 Hydrochloride is primarily within the immune system and the CNS . The interaction with s1p receptors in various tissues accounts for the reported adverse effects

生化学分析

Biochemical Properties

Fingolimod-d4 Hydrochloride interacts with sphingosine 1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects . It exerts inhibitory effects on sphingolipid pathway enzymes, inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A) .

Cellular Effects

Fingolimod-d4 Hydrochloride has profound effects on various types of cells and cellular processes. It can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS . It also induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression .

Molecular Mechanism

Fingolimod-d4 Hydrochloride exerts its effects at the molecular level through several mechanisms. It binds to S1P receptor4 (S1PR4) that is primarily expressed in lymphocytes and hematopoietic tissues . It can induce apoptotic pathways by activation of caspase cascades, enhancing PTEN which inhibits pAkt, and inducing (ROS-JNK-p53) loop-dependent autophagy .

Temporal Effects in Laboratory Settings

It has been shown that the drug has a significant therapeutic effect in immunodeficient mice, not in immunocompetent mice .

Dosage Effects in Animal Models

In an animal model of genetic absence epilepsy, Fingolimod (1 mg/kg) showed transient antiepileptic effects and longer-lasting anti-cognition decline . During the chronic epileptic phase of the mouse kainate model, 6 mg/kg of the drug also showed neuroprotective and anti-gliotic effects besides reducing seizure frequency .

Metabolic Pathways

Fingolimod-d4 Hydrochloride is involved in the sphingosine 1-phosphate (S1P) pathway . It is phosphorylated to Fingolimod-phosphate by two protein kinases, type-1 and type-2 sphingosine kinase (SphK1 and -2), enabling it to interact with sphingosine receptors .

Transport and Distribution

It is known that Fingolimod binds to S1P receptor4 (S1PR4) that is primarily expressed in lymphocytes and hematopoietic tissues .

Subcellular Localization

It is known that Fingolimod activates PP2A that plays a principal role as a regulator of cell cycle/division and growth .

生物活性

FTY720-d4 Hydrochloride, a deuterated form of Fingolimod (FTY720), is a potent immunomodulatory compound primarily recognized for its role in treating multiple sclerosis (MS) and other autoimmune diseases. This article delves into the biological activity of FTY720-d4, including its mechanisms of action, effects on immune cell trafficking, and therapeutic implications based on diverse research findings.

Overview of this compound

FTY720 is a sphingosine-1-phosphate (S1P) receptor modulator that exerts its effects by phosphorylating into FTY720-P, which acts as an agonist for S1P receptors. The deuterated version, FTY720-d4, is designed to enhance pharmacokinetic properties and reduce metabolic degradation, potentially leading to improved therapeutic efficacy and safety profiles.

The primary mechanism through which FTY720-d4 functions involves the modulation of lymphocyte trafficking. Upon phosphorylation, FTY720-P binds to S1P receptors on lymphocytes, leading to their internalization and subsequent sequestration in lymphoid organs. This action effectively reduces the number of circulating lymphocytes and inhibits their migration into inflamed tissues.

Table 1: Comparison of FTY720 and this compound

FeatureFTY720This compound
Chemical StructureNon-deuteratedDeuterated
Mechanism of ActionS1P receptor agonistS1P receptor agonist
PharmacokineticsRapid metabolismSlower metabolism
Therapeutic UseMS treatmentPotentially enhanced MS treatment
Side EffectsBradycardia, headacheReduced side effects?

Multiple Sclerosis

FTY720 has demonstrated significant efficacy in reducing relapse rates in patients with relapsing forms of MS. A clinical trial showed that patients receiving 5 mg daily had a lower incidence of gadolinium-enhancing lesions compared to placebo groups .

In animal models of MS, such as the experimental autoimmune encephalomyelitis (EAE) model, FTY720 treatment resulted in reduced clinical severity and inflammatory cell infiltration into the central nervous system (CNS) . The application of FTY720-d4 could enhance these effects due to its altered pharmacokinetics.

Alzheimer's Disease

Recent studies have explored the potential neuroprotective effects of FTY720 in models of Alzheimer's disease (AD). In APP/PS1 transgenic mice, chronic administration of FTY720 improved long-term potentiation (LTP) deficits and reduced microglial activation, suggesting that it may ameliorate synaptic dysfunction associated with AD . The ability of FTY720-d4 to offer similar or enhanced benefits warrants further investigation.

Case Studies and Clinical Evidence

In a Phase II clinical trial involving renal transplantation, FTY720 was shown to be effective in preventing acute rejection. Patients receiving varying doses displayed a significant reduction in biopsy-confirmed acute rejection rates compared to those on standard therapies . The potential application of FTY720-d4 in this context could lead to improved outcomes due to its enhanced stability and efficacy.

科学的研究の応用

Multiple Sclerosis Treatment

FTY720 (Fingolimod) has been widely studied for its efficacy in treating relapsing-remitting multiple sclerosis (RRMS). Clinical trials have demonstrated that FTY720 significantly reduces the frequency of relapses and the progression of disability in MS patients. For example:

  • Phase II Trials : A study involving 281 patients showed that FTY720 at doses of 1.25 mg and 5.0 mg daily resulted in a significant reduction in gadolinium-enhancing lesions on MRI compared to placebo .
  • Phase III FREEDOMS Study : This study confirmed that patients receiving FTY720 had lower annualized relapse rates (0.18 and 0.16) compared to the placebo group (0.40) .

Neuroprotective Effects

Recent investigations have explored the neuroprotective effects of FTY720 in models of Alzheimer's disease (AD). In APP/PS1 transgenic mice, chronic treatment with FTY720:

  • Rescued synaptic pathology and improved spatial memory performance.
  • Reduced microglial activation and astrogliosis, indicating a decrease in neuroinflammation .
  • Decreased amyloid-beta plaque formation in the hippocampus, suggesting a potential role in mitigating AD pathology .

Organ Transplantation

FTY720 has shown promise in preventing acute rejection in renal transplantation:

  • In a multicenter study, FTY720 was compared with mycophenolate mofetil (MMF) and demonstrated comparable efficacy in preventing acute rejection at a dose of 2.5 mg .
  • The drug's unique mechanism allows it to enhance allograft survival without impairing T cell function, making it an attractive option for immunosuppression .

Case Studies

StudyConditionFindings
Phase II TrialMultiple SclerosisSignificant reduction in gadolinium-enhancing lesions; lower relapse rates compared to placebo .
APP/PS1 Mouse ModelAlzheimer’s DiseaseChronic treatment improved memory and reduced amyloid plaques; decreased neuroinflammation .
Renal Transplant StudyOrgan RejectionComparable efficacy to MMF; reduced acute rejection rates at higher doses .

特性

IUPAC Name

2-amino-1,1,3,3-tetradeuterio-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol;hydrochloride
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI

InChI=1S/C19H33NO2.ClH/c1-2-3-4-5-6-7-8-17-9-11-18(12-10-17)13-14-19(20,15-21)16-22;/h9-12,21-22H,2-8,13-16,20H2,1H3;1H/i15D2,16D2;
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

InChI Key

SWZTYAVBMYWFGS-JWIOGAFXSA-N
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Canonical SMILES

CCCCCCCCC1=CC=C(C=C1)CCC(CO)(CO)N.Cl
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Isomeric SMILES

[2H]C([2H])(C(CCC1=CC=C(C=C1)CCCCCCCC)(C([2H])([2H])O)N)O.Cl
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Formula

C19H34ClNO2
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Molecular Weight

348.0 g/mol
Source PubChem
URL https://pubchem.ncbi.nlm.nih.gov
Description Data deposited in or computed by PubChem

Synthesis routes and methods I

Procedure details

2-Amino-2-[2-(4-octylphenyl)ethyl]-1,3-propanediol (7 g) was dissolved in ethanol (50 ml) and a 1 N hydrochloric acid/ether solution (50 ml) was added thereto. The solvent was distilled away and the resultant crystals were recrystallized from ethanol to give 4.2 g of the subject compound.
Quantity
7 g
Type
reactant
Reaction Step One
Quantity
50 mL
Type
solvent
Reaction Step One
Name
hydrochloric acid ether
Quantity
50 mL
Type
reactant
Reaction Step Two

Synthesis routes and methods II

Procedure details

To 14.1 g (0.04 mol) of 3-(hydroxymethyl)-3-nitro-1-(p-octylphenyl)butane-1,4-diol in 250 ml of methyl alcohol, 30 ml of concentrated hydrochloric acid was added, followed by the catalyst—10% palladium-carbon. The mixture was stirred at 20 kg/cm2 hydrogen pressure for two days at room temperature. The mixture was then filtered, methyl alcohol was distilled off, the residue was dissolved in water, adjusted to pH 8 with saturated sodium bicarbonate, and extracted with ethyl acetate (100 ml×3). The ethyl acetate extracts were dried over magnesium sulfate, filtered, evaporated. The residue was dissolved in ethanol (50 ml) and a 1N hydrochloric acid (50 ml) was added thereto. The mixture was stirred for 1 h, the solvent was distilled off and the resultant solid were recrystallized from ethanol to give Fingolimod hydrochloride.
Quantity
14.1 g
Type
reactant
Reaction Step One
Quantity
30 mL
Type
reactant
Reaction Step One
Quantity
250 mL
Type
solvent
Reaction Step One
Quantity
0 (± 1) mol
Type
reactant
Reaction Step Two
Name
palladium-carbon
Quantity
0 (± 1) mol
Type
catalyst
Reaction Step Three

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
FTY720-d4 Hydrochloride
Reactant of Route 2
FTY720-d4 Hydrochloride
Reactant of Route 3
FTY720-d4 Hydrochloride
Reactant of Route 4
FTY720-d4 Hydrochloride
Reactant of Route 5
FTY720-d4 Hydrochloride
Reactant of Route 6
FTY720-d4 Hydrochloride

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。