molecular formula C29H32O13 B1684455 Étoposide CAS No. 33419-42-0

Étoposide

Numéro de catalogue: B1684455
Numéro CAS: 33419-42-0
Poids moléculaire: 588.6 g/mol
Clé InChI: VJJPUSNTGOMMGY-QBUITQBFSA-N
Attention: Uniquement pour un usage de recherche. Non destiné à un usage humain ou vétérinaire.
En stock
  • Cliquez sur DEMANDE RAPIDE pour recevoir un devis de notre équipe d'experts.
  • Avec des produits de qualité à un prix COMPÉTITIF, vous pouvez vous concentrer davantage sur votre recherche.

Analyse Des Réactions Chimiques

L’étoposide subit plusieurs types de réactions chimiques, notamment :

Les réactifs et les conditions couramment utilisés dans ces réactions comprennent des oxydants comme le peroxyde d’hydrogène et des réducteurs comme le borohydrure de sodium. Les principaux produits formés à partir de ces réactions comprennent les dérivés O-quinone et hydroquinone de l’étoposide .

Applications de la recherche scientifique

L’étoposide a un large éventail d’applications de recherche scientifique, notamment :

Propriétés

Numéro CAS

33419-42-0

Formule moléculaire

C29H32O13

Poids moléculaire

588.6 g/mol

Nom IUPAC

(5S,5aR,8aR,9R)-5-[[(2R,4aR,6R,7S,8R,8aS)-7,8-dihydroxy-2-methyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[6,5-f][1,3]benzodioxol-8-one

InChI

InChI=1S/C29H32O13/c1-11-36-9-20-27(40-11)24(31)25(32)29(41-20)42-26-14-7-17-16(38-10-39-17)6-13(14)21(22-15(26)8-37-28(22)33)12-4-18(34-2)23(30)19(5-12)35-3/h4-7,11,15,20-22,24-27,29-32H,8-10H2,1-3H3/t11-,15+,20-,21-,22+,24-,25+,26-,27-,29+/m1/s1

Clé InChI

VJJPUSNTGOMMGY-QBUITQBFSA-N

Impuretés

The following impurities are limited by the requirements of The British Pharmacopoeia: 4'-carbenzoxy ethylidene lignan P, picroethylidene lignan P, alpha-ethylidene lignan P, lignan P and 4'-demethylepipodophyllotoxin.

SMILES

CC1OCC2C(O1)C(C(C(O2)OC3C4COC(=O)C4C(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O

SMILES isomérique

C[C@@H]1OC[C@@H]2[C@@H](O1)[C@@H]([C@@H]([C@@H](O2)O[C@H]3[C@H]4COC(=O)[C@@H]4[C@@H](C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O

SMILES canonique

CC1OCC2C(O1)C(C(C(O2)OC3C4COC(=O)C4C(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O

Apparence

White to off-white solid powder

Color/Form

Crystals from methanol

melting_point

236-251 °C

33419-42-0

Description physique

Solid

Pictogrammes

Irritant; Health Hazard

Pureté

>98% (or refer to the Certificate of Analysis)

Durée de conservation

>2 years if stored properly

Solubilité

Very soluble in methanol, chloroform;  slightly soluble in ethanol, sparingly soluble in water.
Sol in alc: approx 0.76 mg/ml
Water solubility: approx 0.08 mg/mL

Stockage

Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

Synonymes

alpha-D-Glucopyranosyl Isomer Etoposide
Celltop
Demethyl Epipodophyllotoxin Ethylidine Glucoside
Eposide
Eposin
Eto GRY
Eto-GRY
Etomedac
Etopos
Etoposide
Etoposide Pierre Fabre
Etoposide Teva
Etoposide, (5a alpha)-Isomer
Etoposide, (5a alpha,9 alpha)-Isomer
Etoposide, (5S)-Isomer
Etoposide, alpha D Glucopyranosyl Isomer
Etoposide, alpha-D-Glucopyranosyl Isomer
Etoposido Ferrer Farma
Exitop
Lastet
NSC 141540
NSC-141540
NSC141540
Onkoposid
Riboposid
Teva, Etoposide
Toposar
Vépéside Sandoz
Vépéside-Sandoz
Vepesid
VP 16
VP 16 213
VP 16-213
VP 16213
VP-16
VP16

Pression de vapeur

5.4X10-23 mm Hg at 25 °C /Estimated/

Origine du produit

United States

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Etoposide
Reactant of Route 2
Etoposide
Reactant of Route 3
Etoposide
Reactant of Route 4
Etoposide
Reactant of Route 5
Etoposide
Reactant of Route 6
Etoposide
Customer
Q & A

Q1: What is the primary molecular target of Etoposide?

A1: Etoposide primarily targets DNA Topoisomerase II (Topo II), an enzyme essential for DNA replication and repair. [, ] It inhibits Topo II by trapping the enzyme in a complex with cleaved DNA, ultimately leading to DNA damage and cell death. []

Q2: How does Etoposide-induced DNA damage lead to cell death?

A2: Etoposide-induced DNA damage triggers a series of downstream events, including activation of p53, a tumor suppressor protein. [] p53 can initiate cell cycle arrest, giving the cell time to repair the damage, or, if the damage is too extensive, it can trigger apoptosis (programmed cell death). [, ]

Q3: What is the molecular formula and weight of Etoposide?

A3: While this specific information is not provided in the research excerpts, Etoposide's molecular formula is C29H32O13 and it has a molecular weight of 588.56 g/mol. This information can be readily found in publicly available chemical databases.

Q4: How does Etoposide perform in liposomal formulations for pulmonary delivery?

A5: Research indicates that Etoposide can be successfully incorporated into liposomes for pulmonary delivery. Freeze-dried liposomal formulations of Etoposide, using trehalose as a cryoprotectant, demonstrated good stability in terms of particle size and drug content for up to six months when stored at both ambient and refrigerated temperatures. []

Q5: What is the role of P-glycoprotein (P-gp) in the pharmacokinetics of Etoposide?

A6: P-glycoprotein (P-gp), encoded by the ABCB1 gene, plays a significant role in the absorption, distribution, and excretion of Etoposide. [, ] It acts as a transport protein, limiting the oral uptake of Etoposide and mediating its excretion across the gut wall. []

Q6: How does the ABCB1 (C1236T) polymorphism affect Etoposide's pharmacokinetics?

A7: The ABCB1 (C1236T) polymorphism has been shown to affect the transport activity of P-glycoprotein. Research using recombinant Caco-2 cell lines, expressing either the wild-type or variant P-gp, revealed that the variant P-gp transports Etoposide to a greater extent compared to the wild-type protein. [] This suggests that individuals with the ABCB1 (C1236T) polymorphism might experience altered Etoposide pharmacokinetics and potentially different therapeutic outcomes.

Q7: What is the bioavailability of oral Etoposide?

A8: The oral bioavailability of Etoposide is highly variable, ranging from 25% to 80% among cancer patients. [] This variability can be attributed, in part, to variations in transporter expression or activity, such as P-glycoprotein (P-gp), which influences the absorption and efflux of Etoposide. [, ]

Q8: What is the relationship between Etoposide exposure and neutropenia?

A9: Studies indicate a strong correlation between exposure to the free, pharmacologically active form of Etoposide and the risk of neutropenia, a significant decrease in neutrophils, a type of white blood cell. [] The higher the exposure to free Etoposide, the greater the risk of developing neutropenia.

Q9: What is the efficacy of oral Etoposide in treating metastatic breast cancer?

A10: A pooled analysis of twelve studies investigating the use of oral Etoposide in metastatic breast cancer revealed a moderate clinical effectiveness, with a pooled response rate of 18.5% and a clinical benefit rate of 45.8%. []

Q10: What are the known mechanisms of resistance to Etoposide?

A11: Resistance to Etoposide can arise through various mechanisms, including decreased expression of Topoisomerase II (Topo II), the primary target of Etoposide. [] Other mechanisms involve the multidrug-resistant phenotypes encoded by the mdr1 and MRP (multidrug resistance-associated protein) genes. []

Q11: What are the potential long-term effects of Etoposide treatment?

A13: Etoposide treatment has been associated with an increased risk of developing secondary acute myeloid leukemia (s-AML), a serious blood cancer. [] This risk appears to be higher when Etoposide is used in combination with cyclophosphamide. The latency period for developing s-AML after Etoposide treatment is typically 1-3 years, though longer periods have been reported. []

Q12: Have nanosuspensions been explored as a potential drug delivery system for Etoposide?

A14: Yes, research has investigated the use of Etoposide-loaded bovine serum albumin (BSA) nanosuspensions for parenteral delivery. [] This approach aims to improve the delivery of Etoposide, a poorly water-soluble drug, and potentially enhance its therapeutic efficacy while minimizing side effects.

Q13: What analytical techniques are commonly used to quantify Etoposide in biological samples?

A15: High-performance liquid chromatography (HPLC) is frequently employed to quantify Etoposide in biological samples, such as plasma. [, , ] Fluorescence detection is often used in conjunction with HPLC to enhance sensitivity. []

Q14: How do transporters like ABCC2 and ABCC3 influence Etoposide pharmacokinetics?

A16: ABCC2, also known as MRP2, plays a crucial role in the hepatobiliary excretion of Etoposide. [] ABCC3 (MRP3) contributes to the elimination of Etoposide glucuronide, a metabolite of Etoposide, from the liver into the bloodstream, which is subsequently eliminated in urine. []

Avertissement et informations sur les produits de recherche in vitro

Veuillez noter que tous les articles et informations sur les produits présentés sur BenchChem sont destinés uniquement à des fins informatives. Les produits disponibles à l'achat sur BenchChem sont spécifiquement conçus pour des études in vitro, qui sont réalisées en dehors des organismes vivants. Les études in vitro, dérivées du terme latin "in verre", impliquent des expériences réalisées dans des environnements de laboratoire contrôlés à l'aide de cellules ou de tissus. Il est important de noter que ces produits ne sont pas classés comme médicaments et n'ont pas reçu l'approbation de la FDA pour la prévention, le traitement ou la guérison de toute condition médicale, affection ou maladie. Nous devons souligner que toute forme d'introduction corporelle de ces produits chez les humains ou les animaux est strictement interdite par la loi. Il est essentiel de respecter ces directives pour assurer la conformité aux normes légales et éthiques en matière de recherche et d'expérimentation.