molecular formula C29H32O13 B1684455 Etoposide CAS No. 33419-42-0

Etoposide

カタログ番号: B1684455
CAS番号: 33419-42-0
分子量: 588.6 g/mol
InChIキー: VJJPUSNTGOMMGY-QBUITQBFSA-N
注意: 研究専用です。人間または獣医用ではありません。
在庫あり
  • 専門家チームからの見積もりを受け取るには、QUICK INQUIRYをクリックしてください。
  • 品質商品を競争力のある価格で提供し、研究に集中できます。

化学反応の分析

エトポシドは、以下のものを含む、いくつかのタイプの化学反応を起こします。

これらの反応で使用される一般的な試薬および条件には、過酸化水素などの酸化剤と、水素化ホウ素ナトリウムなどの還元剤が含まれます。 これらの反応から生成される主要な生成物には、エトポシドのO-キノン誘導体とヒドロキノン誘導体が含まれます .

科学的研究の応用

Etoposide is a semi-synthetic derivative of podophyllotoxin that inhibits topoisomerase-II, leading to DNA strand breaks and apoptosis . Since its FDA approval in 1983, this compound has been used to treat solid and hematologic tumors, including lung cancer, germ cell tumors, and lymphoma .

This compound in Other Cancer Treatments

This compound, often in combination with other chemotherapeutic agents, is used to treat various cancers .

  • Non-Hodgkin's Lymphoma this compound, combined with lomustine, methotrexate, and prednisone, is a first-line therapy for non-Hodgkin's lymphoma without major cardiotoxicity .
  • Hodgkin's Disease this compound is a first-line chemotherapeutic agent combined with vincristine, chloramphenicol, and prednisolone, with a 77% response rate .
  • Brain Tumors this compound has been observed to work against brain tumors in combination therapy with cyclophosphamide, cisplatin, vincristine, and carboplatin .
  • Breast Cancer this compound has been explored in the management of metastatic breast cancer . A single-agent trial in untreated patients showed a response rate of approximately 15% .
  • Germ Cell Tumors Adjuvant this compound plus cisplatin for 2 cycles has demonstrated prolonged disease-specific and relapse-free survival with acceptable toxicity and lower drug costs in patients with nonseminomatous germ cell tumors .
  • Choriocarcinoma Low-dose this compound and cisplatin (EP) can be effective in treating elderly patients with choriocarcinoma .

Adverse Events and Toxicity

生物活性

Etoposide is a semisynthetic derivative of podophyllotoxin, primarily utilized as an antineoplastic agent in cancer therapy. Its biological activity is predominantly characterized by its ability to inhibit DNA topoisomerase II, leading to significant effects on DNA synthesis and cell cycle progression. This article delves into the mechanisms of action, clinical applications, and recent research findings regarding this compound's biological activity.

This compound exerts its effects primarily through the following mechanisms:

  • Inhibition of DNA Topoisomerase II : this compound forms a complex with topoisomerase II, preventing the re-ligation of DNA strands after they have been cleaved. This results in the accumulation of DNA double-strand breaks (DSBs), which can trigger apoptosis in cancer cells .
  • Cell Cycle Specificity : The drug is cell cycle-dependent, affecting mainly the S and G2 phases. At high concentrations, it can induce cell lysis during mitosis, while lower concentrations inhibit cells from entering prophase .
  • Activation of DNA Damage Response : this compound activates key proteins involved in the DNA damage response, such as ATM (Ataxia Telangiectasia Mutated) kinase, which leads to the formation of repair foci and chromosomal abnormalities if DSBs are not repaired .

Clinical Applications

This compound is widely used in various chemotherapy regimens for different types of cancers, particularly small-cell lung cancer (SCLC) and testicular cancer. Its effectiveness can be influenced by the scheduling of administration:

  • Small-Cell Lung Cancer : In a randomized trial comparing two administration schedules, the five-day infusion regimen demonstrated an overall response rate of 89%, significantly higher than the 10% observed with a 24-hour continuous infusion schedule .
  • Combination Therapies : this compound is often combined with other agents. For instance, in treating extensive SCLC, combinations with cisplatin have shown objective response rates ranging from 44% to 78% .

Research Findings and Case Studies

Recent studies have expanded our understanding of this compound's biological activity beyond its traditional uses:

  • Antibacterial Activity : A study explored this compound's antibacterial properties when combined with hydroxyapatite, suggesting potential repurposing for treating infections .
  • Pediatric Oncology : The OLIE trial evaluated the combination of lenvatinib, ifosfamide, and this compound in children with high-grade osteosarcoma, showing promising outcomes .
  • Toxicity Management : Research has indicated that this compound can cause myelosuppressive toxicity; however, recent trials have focused on optimizing dosing regimens to mitigate these effects while maintaining efficacy .

Data Summary

The following table summarizes key findings from various studies on this compound:

StudyCancer TypeTreatment RegimenResponse RateNotes
SCLCThis compound (5-day)89%Superior to 24-hour infusion
SCLCThis compound + Cisplatin + PaclitaxelImproved survival ratesCompared to standard regimen
OsteosarcomaLenvatinib + Ifosfamide + this compoundPromising outcomesPediatric trial
Bacterial InfectionsThis compound + HydroxyapatiteInvestigationalPotential for repurposing

Q & A

Basic Research Questions

Q. What is the primary mechanism by which etoposide exerts its anticancer effects?

this compound targets DNA topoisomerase II (Topo II), stabilizing the enzyme-DNA cleavage complex and preventing religation of DNA strands. This results in double-strand breaks (DSBs) and triggers apoptosis via activation of stress-associated signaling pathways (e.g., p53-mediated cell cycle arrest) . Notably, only 0.3% of this compound-induced strand breaks activate H2AX phosphorylation, suggesting most damage is non-toxic .

Q. How can researchers design experiments to assess this compound-induced cytotoxicity in vitro?

Standard protocols include measuring lactate dehydrogenase (LDH) release as a cell death marker, flow cytometry for cell cycle distribution (e.g., G2/M arrest), and apoptosis assays (Annexin V/PI staining). For example, SIN-1-treated astrocytes under glucose deprivation showed this compound's cytoprotective effect via LDH release quantification .

Q. What factors influence the variable oral bioavailability of this compound, and how can these be addressed preclinically?

this compound's low solubility (BCS Class IV) and rapid clearance (terminal half-life: 1.5 hours) limit bioavailability (24–74%). Researchers use nanosuspensions stabilized with surfactants (e.g., PLGA nanoparticles) and optimize formulations via Box–Behnken factorial designs to enhance dissolution and sustained release .

Advanced Research Questions

Q. How can experimental design mitigate biases in studies comparing this compound combination therapies (e.g., cisplatin + this compound)?

Rigorous protocols involve blinding, randomization, and standardized dosing. A meta-analysis of small-cell lung cancer trials highlighted the importance of controlling for confounders like patient stratification and toxicity metrics (e.g., myelosuppression rates) to validate efficacy claims .

Q. What molecular mechanisms underlie this compound resistance, and how can they be systematically investigated?

Resistance arises via reduced Topo II expression, overexpression of drug efflux pumps (ABCC1/ABCC6), or dysregulated signaling pathways (JAK-STAT, MAPK). Gene expression profiling (microarrays, RNA-seq) and functional assays (e.g., siRNA knockdown) in resistant cell lines (e.g., MCF7VP) reveal key pathways . Fluctuation analysis in MES-SA cells estimated mutation rates (2.9 × 10⁻⁶ to 1.7 × 10⁻⁷ per generation) for spontaneous resistance .

Q. How do contradictory findings on this compound's dual role in cytotoxicity and cytoprotection arise, and how can they be resolved?

this compound scavenges peroxynitrite (ONOO⁻) in glucose-deprived astrocytes, reducing oxidative stress independent of cell cycle inhibition . Contradictions may stem from model-specific variables (e.g., cell type, stress conditions). Researchers should validate mechanisms using multiple assays (e.g., glutathione depletion, superoxide anion measurement) .

Q. What advanced formulations improve this compound's pharmacokinetics, and how are they optimized?

Amorphous nanopowders (particle size: ~200 nm) using freeze-drying with cryoprotectants (mannitol) enhance oral absorption (Cmax: 2.21×; AUC: 2.13× vs. coarse powder). Optimization involves response surface methodology for ultrasonication time, phase ratios, and stabilizer concentration .

Q. Methodological Guidance

Q. How should researchers statistically analyze survival data from this compound-treated cohorts?

Use Kaplan-Meier survival curves with log-rank tests for significance. A meta-analysis of high-grade glioma trials reported median survival gains (SG: 7–23 months) and stratified results by treatment regimen (e.g., VP-16 vs. VM-26) .

Q. What in vitro models best recapitulate this compound's blood-brain barrier penetration for CNS cancer studies?

Primary rat astrocyte cultures under glucose deprivation and oxidative stress (SIN-1 exposure) mimic the blood-brain barrier's metabolic constraints. Measure NO release with Clark-type electrodes and superoxide with lucigenin chemiluminescence .

Q. How can researchers validate this compound's target engagement in DNA damage assays?

Comet assays quantify DSBs/SSBs, while γ-H2AX immunofluorescence marks repair foci. Calicheamicin-induced DSBs serve as positive controls to distinguish Topo II-dependent damage .

特性

CAS番号

33419-42-0

分子式

C29H32O13

分子量

588.6 g/mol

IUPAC名

(5S,5aR,8aR,9R)-5-[[(2R,4aR,6R,7S,8R,8aS)-7,8-dihydroxy-2-methyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[6,5-f][1,3]benzodioxol-8-one

InChI

InChI=1S/C29H32O13/c1-11-36-9-20-27(40-11)24(31)25(32)29(41-20)42-26-14-7-17-16(38-10-39-17)6-13(14)21(22-15(26)8-37-28(22)33)12-4-18(34-2)23(30)19(5-12)35-3/h4-7,11,15,20-22,24-27,29-32H,8-10H2,1-3H3/t11-,15+,20-,21-,22+,24-,25+,26-,27-,29+/m1/s1

InChIキー

VJJPUSNTGOMMGY-QBUITQBFSA-N

不純物

The following impurities are limited by the requirements of The British Pharmacopoeia: 4'-carbenzoxy ethylidene lignan P, picroethylidene lignan P, alpha-ethylidene lignan P, lignan P and 4'-demethylepipodophyllotoxin.

SMILES

CC1OCC2C(O1)C(C(C(O2)OC3C4COC(=O)C4C(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O

異性体SMILES

C[C@@H]1OC[C@@H]2[C@@H](O1)[C@@H]([C@@H]([C@@H](O2)O[C@H]3[C@H]4COC(=O)[C@@H]4[C@@H](C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O

正規SMILES

CC1OCC2C(O1)C(C(C(O2)OC3C4COC(=O)C4C(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O

外観

White to off-white solid powder

Color/Form

Crystals from methanol

melting_point

236-251 °C

Key on ui other cas no.

33419-42-0

物理的記述

Solid

ピクトグラム

Irritant; Health Hazard

純度

>98% (or refer to the Certificate of Analysis)

賞味期限

>2 years if stored properly

溶解性

Very soluble in methanol, chloroform;  slightly soluble in ethanol, sparingly soluble in water.
Sol in alc: approx 0.76 mg/ml
Water solubility: approx 0.08 mg/mL

保存方法

Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).

同義語

alpha-D-Glucopyranosyl Isomer Etoposide
Celltop
Demethyl Epipodophyllotoxin Ethylidine Glucoside
Eposide
Eposin
Eto GRY
Eto-GRY
Etomedac
Etopos
Etoposide
Etoposide Pierre Fabre
Etoposide Teva
Etoposide, (5a alpha)-Isomer
Etoposide, (5a alpha,9 alpha)-Isomer
Etoposide, (5S)-Isomer
Etoposide, alpha D Glucopyranosyl Isomer
Etoposide, alpha-D-Glucopyranosyl Isomer
Etoposido Ferrer Farma
Exitop
Lastet
NSC 141540
NSC-141540
NSC141540
Onkoposid
Riboposid
Teva, Etoposide
Toposar
Vépéside Sandoz
Vépéside-Sandoz
Vepesid
VP 16
VP 16 213
VP 16-213
VP 16213
VP-16
VP16

蒸気圧

5.4X10-23 mm Hg at 25 °C /Estimated/

製品の起源

United States

Retrosynthesis Analysis

AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.

One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.

Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.

Strategy Settings

Precursor scoring Relevance Heuristic
Min. plausibility 0.01
Model Template_relevance
Template Set Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis
Top-N result to add to graph 6

Feasible Synthetic Routes

Reactant of Route 1
Etoposide
Reactant of Route 2
Etoposide
Reactant of Route 3
Etoposide
Reactant of Route 4
Etoposide
Reactant of Route 5
Etoposide
Reactant of Route 6
Etoposide

試験管内研究製品の免責事項と情報

BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。