
Etoposide
概要
説明
準備方法
エトポシドは、ポドフィロトキシンを出発物質として、半合成プロセスによって合成されます。 一般的な方法の1つは、4'-脱メチルエピポドフィロトキシンと2,3-ジ-O-ジクロロアセチル-(4,6-O-エチリデン)-β-D-グルコピラノースを、トリメチルシリルトリフルオロメタンスルホネート(TMSOTf)の存在下で直接縮合させて、4'-脱メチルエピポドフィロトキシン-4-(2,3-ジ-O-ジクロロアセチル-4,6-O-エチリデン)-β-D-グルコピラノシドを得て、これをエトポシドに変換する方法です . この方法は、既存の手法と比較して、収率が向上し、反応時間が短縮され、分離操作が容易になるという利点があります .
化学反応の分析
エトポシドは、以下のものを含む、いくつかのタイプの化学反応を起こします。
酸化: エトポシドは、酸化されてO-キノン誘導体となり、これがDNAに対する活性に重要な役割を果たします.
還元: 還元反応により、エトポシドはヒドロキノン型に変換されます。
置換: エトポシドは、特にグルコピラノシド部分で、置換反応を起こす可能性があります。
これらの反応で使用される一般的な試薬および条件には、過酸化水素などの酸化剤と、水素化ホウ素ナトリウムなどの還元剤が含まれます。 これらの反応から生成される主要な生成物には、エトポシドのO-キノン誘導体とヒドロキノン誘導体が含まれます .
科学的研究の応用
Etoposide is a semi-synthetic derivative of podophyllotoxin that inhibits topoisomerase-II, leading to DNA strand breaks and apoptosis . Since its FDA approval in 1983, this compound has been used to treat solid and hematologic tumors, including lung cancer, germ cell tumors, and lymphoma .
This compound in Other Cancer Treatments
This compound, often in combination with other chemotherapeutic agents, is used to treat various cancers .
- Non-Hodgkin's Lymphoma this compound, combined with lomustine, methotrexate, and prednisone, is a first-line therapy for non-Hodgkin's lymphoma without major cardiotoxicity .
- Hodgkin's Disease this compound is a first-line chemotherapeutic agent combined with vincristine, chloramphenicol, and prednisolone, with a 77% response rate .
- Brain Tumors this compound has been observed to work against brain tumors in combination therapy with cyclophosphamide, cisplatin, vincristine, and carboplatin .
- Breast Cancer this compound has been explored in the management of metastatic breast cancer . A single-agent trial in untreated patients showed a response rate of approximately 15% .
- Germ Cell Tumors Adjuvant this compound plus cisplatin for 2 cycles has demonstrated prolonged disease-specific and relapse-free survival with acceptable toxicity and lower drug costs in patients with nonseminomatous germ cell tumors .
- Choriocarcinoma Low-dose this compound and cisplatin (EP) can be effective in treating elderly patients with choriocarcinoma .
Adverse Events and Toxicity
作用機序
類似化合物との比較
エトポシドは、テニポシドやポドフィロトキシンなど、他のポドフィロトキシン誘導体と類似しています。 エトポシドは、トポイソメラーゼIIの特異的な阻害と、幅広い癌治療への利用において独自性を持ちます .
生物活性
Etoposide is a semisynthetic derivative of podophyllotoxin, primarily utilized as an antineoplastic agent in cancer therapy. Its biological activity is predominantly characterized by its ability to inhibit DNA topoisomerase II, leading to significant effects on DNA synthesis and cell cycle progression. This article delves into the mechanisms of action, clinical applications, and recent research findings regarding this compound's biological activity.
This compound exerts its effects primarily through the following mechanisms:
- Inhibition of DNA Topoisomerase II : this compound forms a complex with topoisomerase II, preventing the re-ligation of DNA strands after they have been cleaved. This results in the accumulation of DNA double-strand breaks (DSBs), which can trigger apoptosis in cancer cells .
- Cell Cycle Specificity : The drug is cell cycle-dependent, affecting mainly the S and G2 phases. At high concentrations, it can induce cell lysis during mitosis, while lower concentrations inhibit cells from entering prophase .
- Activation of DNA Damage Response : this compound activates key proteins involved in the DNA damage response, such as ATM (Ataxia Telangiectasia Mutated) kinase, which leads to the formation of repair foci and chromosomal abnormalities if DSBs are not repaired .
Clinical Applications
This compound is widely used in various chemotherapy regimens for different types of cancers, particularly small-cell lung cancer (SCLC) and testicular cancer. Its effectiveness can be influenced by the scheduling of administration:
- Small-Cell Lung Cancer : In a randomized trial comparing two administration schedules, the five-day infusion regimen demonstrated an overall response rate of 89%, significantly higher than the 10% observed with a 24-hour continuous infusion schedule .
- Combination Therapies : this compound is often combined with other agents. For instance, in treating extensive SCLC, combinations with cisplatin have shown objective response rates ranging from 44% to 78% .
Research Findings and Case Studies
Recent studies have expanded our understanding of this compound's biological activity beyond its traditional uses:
- Antibacterial Activity : A study explored this compound's antibacterial properties when combined with hydroxyapatite, suggesting potential repurposing for treating infections .
- Pediatric Oncology : The OLIE trial evaluated the combination of lenvatinib, ifosfamide, and this compound in children with high-grade osteosarcoma, showing promising outcomes .
- Toxicity Management : Research has indicated that this compound can cause myelosuppressive toxicity; however, recent trials have focused on optimizing dosing regimens to mitigate these effects while maintaining efficacy .
Data Summary
The following table summarizes key findings from various studies on this compound:
Q & A
Basic Research Questions
Q. What is the primary mechanism by which etoposide exerts its anticancer effects?
this compound targets DNA topoisomerase II (Topo II), stabilizing the enzyme-DNA cleavage complex and preventing religation of DNA strands. This results in double-strand breaks (DSBs) and triggers apoptosis via activation of stress-associated signaling pathways (e.g., p53-mediated cell cycle arrest) . Notably, only 0.3% of this compound-induced strand breaks activate H2AX phosphorylation, suggesting most damage is non-toxic .
Q. How can researchers design experiments to assess this compound-induced cytotoxicity in vitro?
Standard protocols include measuring lactate dehydrogenase (LDH) release as a cell death marker, flow cytometry for cell cycle distribution (e.g., G2/M arrest), and apoptosis assays (Annexin V/PI staining). For example, SIN-1-treated astrocytes under glucose deprivation showed this compound's cytoprotective effect via LDH release quantification .
Q. What factors influence the variable oral bioavailability of this compound, and how can these be addressed preclinically?
this compound's low solubility (BCS Class IV) and rapid clearance (terminal half-life: 1.5 hours) limit bioavailability (24–74%). Researchers use nanosuspensions stabilized with surfactants (e.g., PLGA nanoparticles) and optimize formulations via Box–Behnken factorial designs to enhance dissolution and sustained release .
Advanced Research Questions
Q. How can experimental design mitigate biases in studies comparing this compound combination therapies (e.g., cisplatin + this compound)?
Rigorous protocols involve blinding, randomization, and standardized dosing. A meta-analysis of small-cell lung cancer trials highlighted the importance of controlling for confounders like patient stratification and toxicity metrics (e.g., myelosuppression rates) to validate efficacy claims .
Q. What molecular mechanisms underlie this compound resistance, and how can they be systematically investigated?
Resistance arises via reduced Topo II expression, overexpression of drug efflux pumps (ABCC1/ABCC6), or dysregulated signaling pathways (JAK-STAT, MAPK). Gene expression profiling (microarrays, RNA-seq) and functional assays (e.g., siRNA knockdown) in resistant cell lines (e.g., MCF7VP) reveal key pathways . Fluctuation analysis in MES-SA cells estimated mutation rates (2.9 × 10⁻⁶ to 1.7 × 10⁻⁷ per generation) for spontaneous resistance .
Q. How do contradictory findings on this compound's dual role in cytotoxicity and cytoprotection arise, and how can they be resolved?
this compound scavenges peroxynitrite (ONOO⁻) in glucose-deprived astrocytes, reducing oxidative stress independent of cell cycle inhibition . Contradictions may stem from model-specific variables (e.g., cell type, stress conditions). Researchers should validate mechanisms using multiple assays (e.g., glutathione depletion, superoxide anion measurement) .
Q. What advanced formulations improve this compound's pharmacokinetics, and how are they optimized?
Amorphous nanopowders (particle size: ~200 nm) using freeze-drying with cryoprotectants (mannitol) enhance oral absorption (Cmax: 2.21×; AUC: 2.13× vs. coarse powder). Optimization involves response surface methodology for ultrasonication time, phase ratios, and stabilizer concentration .
Q. Methodological Guidance
Q. How should researchers statistically analyze survival data from this compound-treated cohorts?
Use Kaplan-Meier survival curves with log-rank tests for significance. A meta-analysis of high-grade glioma trials reported median survival gains (SG: 7–23 months) and stratified results by treatment regimen (e.g., VP-16 vs. VM-26) .
Q. What in vitro models best recapitulate this compound's blood-brain barrier penetration for CNS cancer studies?
Primary rat astrocyte cultures under glucose deprivation and oxidative stress (SIN-1 exposure) mimic the blood-brain barrier's metabolic constraints. Measure NO release with Clark-type electrodes and superoxide with lucigenin chemiluminescence .
Q. How can researchers validate this compound's target engagement in DNA damage assays?
Comet assays quantify DSBs/SSBs, while γ-H2AX immunofluorescence marks repair foci. Calicheamicin-induced DSBs serve as positive controls to distinguish Topo II-dependent damage .
特性
CAS番号 |
33419-42-0 |
---|---|
分子式 |
C29H32O13 |
分子量 |
588.6 g/mol |
IUPAC名 |
(5S,5aR,8aR,9R)-5-[[(2R,4aR,6R,7S,8R,8aS)-7,8-dihydroxy-2-methyl-4,4a,6,7,8,8a-hexahydropyrano[3,2-d][1,3]dioxin-6-yl]oxy]-9-(4-hydroxy-3,5-dimethoxyphenyl)-5a,6,8a,9-tetrahydro-5H-[2]benzofuro[6,5-f][1,3]benzodioxol-8-one |
InChI |
InChI=1S/C29H32O13/c1-11-36-9-20-27(40-11)24(31)25(32)29(41-20)42-26-14-7-17-16(38-10-39-17)6-13(14)21(22-15(26)8-37-28(22)33)12-4-18(34-2)23(30)19(5-12)35-3/h4-7,11,15,20-22,24-27,29-32H,8-10H2,1-3H3/t11-,15+,20-,21-,22+,24-,25+,26-,27-,29+/m1/s1 |
InChIキー |
VJJPUSNTGOMMGY-QBUITQBFSA-N |
不純物 |
The following impurities are limited by the requirements of The British Pharmacopoeia: 4'-carbenzoxy ethylidene lignan P, picroethylidene lignan P, alpha-ethylidene lignan P, lignan P and 4'-demethylepipodophyllotoxin. |
SMILES |
CC1OCC2C(O1)C(C(C(O2)OC3C4COC(=O)C4C(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O |
異性体SMILES |
C[C@@H]1OC[C@@H]2[C@@H](O1)[C@@H]([C@@H]([C@@H](O2)O[C@H]3[C@H]4COC(=O)[C@@H]4[C@@H](C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O |
正規SMILES |
CC1OCC2C(O1)C(C(C(O2)OC3C4COC(=O)C4C(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O |
外観 |
White to off-white solid powder |
Color/Form |
Crystals from methanol |
melting_point |
236-251 °C |
Key on ui other cas no. |
33419-42-0 |
物理的記述 |
Solid |
ピクトグラム |
Irritant; Health Hazard |
純度 |
>98% (or refer to the Certificate of Analysis) |
賞味期限 |
>2 years if stored properly |
溶解性 |
Very soluble in methanol, chloroform; slightly soluble in ethanol, sparingly soluble in water. Sol in alc: approx 0.76 mg/ml Water solubility: approx 0.08 mg/mL |
保存方法 |
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years). |
同義語 |
alpha-D-Glucopyranosyl Isomer Etoposide Celltop Demethyl Epipodophyllotoxin Ethylidine Glucoside Eposide Eposin Eto GRY Eto-GRY Etomedac Etopos Etoposide Etoposide Pierre Fabre Etoposide Teva Etoposide, (5a alpha)-Isomer Etoposide, (5a alpha,9 alpha)-Isomer Etoposide, (5S)-Isomer Etoposide, alpha D Glucopyranosyl Isomer Etoposide, alpha-D-Glucopyranosyl Isomer Etoposido Ferrer Farma Exitop Lastet NSC 141540 NSC-141540 NSC141540 Onkoposid Riboposid Teva, Etoposide Toposar Vépéside Sandoz Vépéside-Sandoz Vepesid VP 16 VP 16 213 VP 16-213 VP 16213 VP-16 VP16 |
蒸気圧 |
5.4X10-23 mm Hg at 25 °C /Estimated/ |
製品の起源 |
United States |
Retrosynthesis Analysis
AI-Powered Synthesis Planning: Our tool employs the Template_relevance Pistachio, Template_relevance Bkms_metabolic, Template_relevance Pistachio_ringbreaker, Template_relevance Reaxys, Template_relevance Reaxys_biocatalysis model, leveraging a vast database of chemical reactions to predict feasible synthetic routes.
One-Step Synthesis Focus: Specifically designed for one-step synthesis, it provides concise and direct routes for your target compounds, streamlining the synthesis process.
Accurate Predictions: Utilizing the extensive PISTACHIO, BKMS_METABOLIC, PISTACHIO_RINGBREAKER, REAXYS, REAXYS_BIOCATALYSIS database, our tool offers high-accuracy predictions, reflecting the latest in chemical research and data.
Strategy Settings
Precursor scoring | Relevance Heuristic |
---|---|
Min. plausibility | 0.01 |
Model | Template_relevance |
Template Set | Pistachio/Bkms_metabolic/Pistachio_ringbreaker/Reaxys/Reaxys_biocatalysis |
Top-N result to add to graph | 6 |
Feasible Synthetic Routes
試験管内研究製品の免責事項と情報
BenchChemで提示されるすべての記事および製品情報は、情報提供を目的としています。BenchChemで購入可能な製品は、生体外研究のために特別に設計されています。生体外研究は、ラテン語の "in glass" に由来し、生物体の外で行われる実験を指します。これらの製品は医薬品または薬として分類されておらず、FDAから任何の医療状態、病気、または疾患の予防、治療、または治癒のために承認されていません。これらの製品を人間または動物に体内に導入する形態は、法律により厳格に禁止されています。これらのガイドラインに従うことは、研究と実験において法的および倫理的な基準の遵守を確実にするために重要です。